Basic invariants
Dimension: | $2$ |
Group: | $Q_8$ |
Conductor: | \(142129\)\(\medspace = 13^{2} \cdot 29^{2} \) |
Frobenius-Schur indicator: | $-1$ |
Root number: | $-1$ |
Artin field: | Galois closure of 8.0.2871098559212689.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $Q_8$ |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{13}, \sqrt{29})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - 3x^{7} + 72x^{6} - 592x^{5} + 3519x^{4} - 9968x^{3} + 23522x^{2} - 66393x + 114383 \) . |
The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 5 + 42\cdot 103 + 20\cdot 103^{2} + 95\cdot 103^{3} + 60\cdot 103^{4} +O(103^{5})\) |
$r_{ 2 }$ | $=$ | \( 14 + 64\cdot 103 + 79\cdot 103^{2} + 33\cdot 103^{3} + 40\cdot 103^{4} +O(103^{5})\) |
$r_{ 3 }$ | $=$ | \( 15 + 2\cdot 103 + 101\cdot 103^{2} + 77\cdot 103^{3} + 7\cdot 103^{4} +O(103^{5})\) |
$r_{ 4 }$ | $=$ | \( 17 + 87\cdot 103 + 96\cdot 103^{2} + 3\cdot 103^{3} + 44\cdot 103^{4} +O(103^{5})\) |
$r_{ 5 }$ | $=$ | \( 25 + 82\cdot 103 + 36\cdot 103^{2} + 16\cdot 103^{3} + 36\cdot 103^{4} +O(103^{5})\) |
$r_{ 6 }$ | $=$ | \( 58 + 66\cdot 103 + 10\cdot 103^{2} + 103^{3} + 78\cdot 103^{4} +O(103^{5})\) |
$r_{ 7 }$ | $=$ | \( 88 + 31\cdot 103 + 14\cdot 103^{2} + 40\cdot 103^{3} + 31\cdot 103^{4} +O(103^{5})\) |
$r_{ 8 }$ | $=$ | \( 90 + 35\cdot 103 + 52\cdot 103^{2} + 40\cdot 103^{3} + 10\cdot 103^{4} +O(103^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,4)(2,6)(3,8)(5,7)$ | $-2$ | ✓ |
$2$ | $4$ | $(1,8,4,3)(2,5,6,7)$ | $0$ | |
$2$ | $4$ | $(1,6,4,2)(3,7,8,5)$ | $0$ | |
$2$ | $4$ | $(1,5,4,7)(2,3,6,8)$ | $0$ |