Properties

Label 2.142129.8t5.a.a
Dimension $2$
Group $Q_8$
Conductor $142129$
Root number $-1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(142129\)\(\medspace = 13^{2} \cdot 29^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $-1$
Artin field: Galois closure of 8.0.2871098559212689.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{13}, \sqrt{29})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 3x^{7} + 72x^{6} - 592x^{5} + 3519x^{4} - 9968x^{3} + 23522x^{2} - 66393x + 114383 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 5 + 42\cdot 103 + 20\cdot 103^{2} + 95\cdot 103^{3} + 60\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 14 + 64\cdot 103 + 79\cdot 103^{2} + 33\cdot 103^{3} + 40\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 15 + 2\cdot 103 + 101\cdot 103^{2} + 77\cdot 103^{3} + 7\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 17 + 87\cdot 103 + 96\cdot 103^{2} + 3\cdot 103^{3} + 44\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 25 + 82\cdot 103 + 36\cdot 103^{2} + 16\cdot 103^{3} + 36\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 58 + 66\cdot 103 + 10\cdot 103^{2} + 103^{3} + 78\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 88 + 31\cdot 103 + 14\cdot 103^{2} + 40\cdot 103^{3} + 31\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 90 + 35\cdot 103 + 52\cdot 103^{2} + 40\cdot 103^{3} + 10\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,2)(3,7,8,5)$
$(1,8,4,3)(2,5,6,7)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,8)(5,7)$$-2$
$2$$4$$(1,8,4,3)(2,5,6,7)$$0$
$2$$4$$(1,6,4,2)(3,7,8,5)$$0$
$2$$4$$(1,5,4,7)(2,3,6,8)$$0$