Properties

Label 2.1400.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $1400$
Root number $1$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 4.0.9800.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.56.2t1.b.a
Projective image: $C_2^2$
Projective field: \(\Q(\sqrt{2}, \sqrt{-7})\)

Defining polynomial

$f(x)$$=$\(x^{4} - x^{3} - 5 x^{2} + 7 x + 14\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 14 + 11\cdot 113 + 96\cdot 113^{2} + 105\cdot 113^{3} + 87\cdot 113^{4} +O(113^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 29 + 38\cdot 113 + 96\cdot 113^{2} + 16\cdot 113^{3} + 44\cdot 113^{4} +O(113^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 75 + 52\cdot 113 + 102\cdot 113^{2} + 43\cdot 113^{3} + 99\cdot 113^{4} +O(113^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 109 + 10\cdot 113 + 44\cdot 113^{2} + 59\cdot 113^{3} + 107\cdot 113^{4} +O(113^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$

The blue line marks the conjugacy class containing complex conjugation.