Properties

Label 2.140.6t3.a.a
Dimension $2$
Group $D_{6}$
Conductor $140$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.137200.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.35.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.140.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - x^{4} - x^{3} + 2x + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{2} + 21x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 15 a + 17 + \left(8 a + 8\right)\cdot 23 + \left(16 a + 4\right)\cdot 23^{2} + \left(a + 18\right)\cdot 23^{3} + \left(15 a + 14\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 a + 8 + \left(18 a + 20\right)\cdot 23 + \left(2 a + 14\right)\cdot 23^{2} + \left(4 a + 1\right)\cdot 23^{3} + \left(18 a + 15\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 + 18\cdot 23 + 17\cdot 23^{2} + 11\cdot 23^{3} +O(23^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 8 a + 1 + \left(14 a + 11\right)\cdot 23 + \left(6 a + 5\right)\cdot 23^{2} + \left(21 a + 5\right)\cdot 23^{3} + \left(7 a + 20\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 19 + 23 + 23^{2} + 2\cdot 23^{3} + 17\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 21 a + 12 + \left(4 a + 8\right)\cdot 23 + \left(20 a + 2\right)\cdot 23^{2} + \left(18 a + 7\right)\cdot 23^{3} + \left(4 a + 1\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,5)$$-2$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$3$$2$$(1,5)(3,6)$$0$
$2$$3$$(1,4,5)(2,3,6)$$-1$
$2$$6$$(1,3,4,6,5,2)$$1$

The blue line marks the conjugacy class containing complex conjugation.