Properties

Label 2.140.12t18.a.a
Dimension $2$
Group $C_6\times S_3$
Conductor $140$
Root number not computed
Indicator $0$

Related objects

Learn more about

Basic invariants

Dimension: $2$
Group: $C_6\times S_3$
Conductor: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Artin stem field: 12.0.153664000000.1
Galois orbit size: $2$
Smallest permutation container: $C_6\times S_3$
Parity: odd
Determinant: 1.140.6t1.b.b
Projective image: $S_3$
Projective stem field: 3.1.980.1

Defining polynomial

$f(x)$$=$\(x^{12} + x^{10} - 4 x^{9} + 4 x^{8} - 6 x^{7} + 12 x^{6} - 12 x^{5} + 12 x^{4} - 16 x^{3} + 14 x^{2} - 6 x + 1\)  Toggle raw display.

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \(x^{6} + 2 x^{4} + 10 x^{2} + 3 x + 3\)  Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 a^{5} + 13 a^{4} + 16 a^{3} + 5 a^{2} + 11 a + 16 + \left(10 a^{5} + 14 a^{4} + 16 a^{2} + 11 a + 1\right)\cdot 17 + \left(2 a^{5} + 15 a^{4} + 12 a^{3} + 3 a^{2} + 6 a + 16\right)\cdot 17^{2} + \left(13 a^{5} + 5 a^{4} + 16 a^{3} + 16 a^{2} + 13\right)\cdot 17^{3} + \left(2 a^{5} + 7 a^{4} + 2 a^{3} + a^{2} + 9\right)\cdot 17^{4} + \left(10 a^{5} + 9 a^{4} + 9 a^{3} + 5 a^{2} + 3 a + 2\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 16 a^{5} + 14 a^{4} + 4 a^{3} + 14 a^{2} + 16 a + 10 + \left(2 a^{5} + 11 a^{4} + a^{3} + 13 a + 2\right)\cdot 17 + \left(11 a^{5} + 15 a^{4} + 12 a^{3} + 9 a^{2} + 15 a + 11\right)\cdot 17^{2} + \left(15 a^{5} + 13 a^{4} + 5 a^{3} + 3 a^{2} + 2 a + 15\right)\cdot 17^{3} + \left(3 a^{5} + 16 a^{4} + a^{3} + 10 a^{2} + 13 a + 7\right)\cdot 17^{4} + \left(4 a^{5} + 10 a^{4} + 2 a^{3} + 7 a^{2} + 8 a + 3\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 4 a^{5} + a^{4} + 7 a^{2} + 15 a + 15 + \left(a^{5} + 10 a^{4} + 7 a^{3} + 3 a + 14\right)\cdot 17 + \left(12 a^{4} + 2 a^{3} + 4 a^{2} + 8 a\right)\cdot 17^{2} + \left(12 a^{5} + 3 a^{4} + 12 a^{3} + 8 a^{2} + 5 a + 11\right)\cdot 17^{3} + \left(8 a^{5} + 4 a^{4} + 2 a^{3} + 14 a^{2} + a + 10\right)\cdot 17^{4} + \left(16 a^{4} + 16 a^{3} + 5 a^{2} + 11 a + 9\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 9 a^{4} + 16 a^{3} + 10 a^{2} + 5 a + 3 + \left(7 a^{5} + 10 a^{4} + 8 a^{3} + 14 a^{2} + 11 a + 12\right)\cdot 17 + \left(4 a^{5} + 6 a^{4} + 6 a^{3} + 13 a^{2} + 2 a + 5\right)\cdot 17^{2} + \left(5 a^{5} + a^{4} + 13 a^{3} + 4 a^{2} + 10 a + 14\right)\cdot 17^{3} + \left(4 a^{5} + 12 a^{4} + 16 a^{3} + a^{2} + 6 a + 8\right)\cdot 17^{4} + \left(7 a^{5} + 5 a^{4} + 9 a^{3} + 10 a^{2} + 4 a + 1\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 10 a^{5} + 3 a^{4} + 13 a^{3} + 13 a^{2} + 8 a + 5 + \left(5 a^{5} + 16 a^{4} + 3 a^{3} + 9 a^{2} + 16 a + 2\right)\cdot 17 + \left(3 a^{5} + 13 a^{4} + 9 a^{3} + 2 a^{2} + 7 a + 1\right)\cdot 17^{2} + \left(a^{5} + 14 a^{4} + 14 a^{3} + 15 a^{2} + 12 a + 8\right)\cdot 17^{3} + \left(11 a^{5} + 8 a^{4} + 3 a^{3} + 10 a^{2} + 16 a + 13\right)\cdot 17^{4} + \left(12 a^{5} + 3 a^{4} + 16 a^{3} + 8 a^{2} + 5 a + 10\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 6 }$ $=$ \( a^{5} + 9 a^{4} + 3 a^{3} + 8 a + 13 + \left(16 a^{5} + 12 a^{4} + 14 a^{3} + 4 a^{2} + 7 a + 15\right)\cdot 17 + \left(3 a^{5} + 4 a^{4} + a^{3} + 7 a^{2} + 8 a + 9\right)\cdot 17^{2} + \left(11 a^{4} + 16 a^{3} + 3 a^{2} + 2 a + 2\right)\cdot 17^{3} + \left(3 a^{5} + 4 a^{4} + 4 a^{3} + 11 a^{2} + 3 a + 15\right)\cdot 17^{4} + \left(3 a^{5} + 3 a^{4} + 3 a^{3} + 6 a + 8\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 7 }$ $=$ \( 7 a^{5} + 12 a^{4} + 12 a^{3} + 9 a^{2} + 3 a + 6 + \left(14 a^{5} + 2 a^{4} + 9 a^{2} + 9 a + 3\right)\cdot 17 + \left(5 a^{5} + 7 a^{4} + 9 a^{3} + 10 a^{2} + 5 a + 16\right)\cdot 17^{2} + \left(5 a^{5} + 11 a^{4} + 9 a^{3} + 14 a^{2} + 14 a + 16\right)\cdot 17^{3} + \left(12 a^{5} + 14 a^{4} + a^{3} + 6 a + 3\right)\cdot 17^{4} + \left(2 a^{5} + 14 a^{4} + 12 a^{3} + 7 a^{2} + 12 a + 14\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 8 }$ $=$ \( 16 a^{4} + 3 a^{3} + 16 a^{2} + 4 a + 16 + \left(11 a^{5} + 3 a^{4} + 16 a^{3} + 5 a^{2} + 3\right)\cdot 17 + \left(2 a^{5} + 14 a^{4} + a^{3} + 2 a^{2}\right)\cdot 17^{2} + \left(2 a^{5} + 13 a^{4} + 12 a^{3} + 3 a^{2} + 3 a + 1\right)\cdot 17^{3} + \left(4 a^{5} + 13 a^{4} + 2 a^{3} + 11 a^{2} + 6 a + 10\right)\cdot 17^{4} + \left(12 a^{4} + 13 a^{3} + 3 a^{2} + 3 a\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 9 }$ $=$ \( 13 a^{4} + 4 a^{3} + 5 a^{2} + 16 a + 11 + \left(14 a^{5} + 14 a^{4} + 12 a^{3} + 2 a^{2} + 7 a + 13\right)\cdot 17 + \left(9 a^{5} + 8 a^{4} + 16 a^{3} + 5 a^{2} + 9 a + 11\right)\cdot 17^{2} + \left(5 a^{5} + 11 a^{4} + 5 a^{3} + 4 a^{2} + 15 a + 2\right)\cdot 17^{3} + \left(13 a^{5} + 3 a^{4} + 3 a^{3} + 11 a^{2} + 8 a\right)\cdot 17^{4} + \left(13 a^{5} + 5 a^{4} + a^{3} + 16 a^{2} + 5 a + 11\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 10 }$ $=$ \( 5 a^{5} + 16 a^{4} + 5 a^{3} + 3 a^{2} + \left(6 a^{5} + 16 a^{3} + 16 a^{2} + 15 a\right)\cdot 17 + \left(2 a^{5} + 13 a^{4} + 7 a^{3} + 11 a + 15\right)\cdot 17^{2} + \left(13 a^{5} + 9 a^{4} + 2 a^{3} + a^{2} + 15 a + 13\right)\cdot 17^{3} + \left(6 a^{5} + 2 a^{4} + 11 a^{3} + 2 a^{2} + 5 a + 15\right)\cdot 17^{4} + \left(7 a^{5} + 11 a^{4} + 16 a^{3} + 6 a^{2} + 3 a + 16\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 11 }$ $=$ \( 11 a^{5} + 9 a^{4} + 6 a^{3} + 12 a^{2} + 15 a + 2 + \left(5 a^{5} + 9 a^{4} + 9 a^{3} + 12 a^{2} + a\right)\cdot 17 + \left(12 a^{5} + 9 a^{4} + a^{3} + 7 a^{2} + 13 a + 15\right)\cdot 17^{2} + \left(13 a^{5} + 3 a^{4} + 9 a^{3} + 9 a^{2} + 2 a + 3\right)\cdot 17^{3} + \left(2 a^{5} + 12 a^{4} + 2 a^{3} + 11 a^{2} + 8\right)\cdot 17^{4} + \left(11 a^{5} + a^{4} + 13 a^{3} + 7 a^{2} + 13 a + 2\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 12 }$ $=$ \( 12 a^{5} + 4 a^{4} + 3 a^{3} + 8 a^{2} + a + 5 + \left(7 a^{5} + 11 a^{4} + 11 a^{3} + 9 a^{2} + 3 a + 14\right)\cdot 17 + \left(9 a^{5} + 13 a^{4} + 3 a^{3} + 12 a + 15\right)\cdot 17^{2} + \left(14 a^{5} + a^{3} + a^{2} + 16 a + 14\right)\cdot 17^{3} + \left(11 a^{5} + a^{4} + 14 a^{3} + 15 a^{2} + 15 a + 14\right)\cdot 17^{4} + \left(11 a^{5} + 7 a^{4} + 5 a^{3} + 5 a^{2} + 7 a + 2\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,12,5,2,3,10)(4,11)(6,9)(7,8)$
$(4,8,6)(7,9,11)$
$(1,2)(3,12)(4,11)(5,10)(6,9)(7,8)$
$(1,4,5,6,3,8)(2,11,10,9,12,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,12)(4,11)(5,10)(6,9)(7,8)$$-2$
$3$$2$$(1,6)(2,9)(3,4)(5,8)(7,10)(11,12)$$0$
$3$$2$$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$$0$
$1$$3$$(1,5,3)(2,10,12)(4,6,8)(7,11,9)$$2 \zeta_{3}$
$1$$3$$(1,3,5)(2,12,10)(4,8,6)(7,9,11)$$-2 \zeta_{3} - 2$
$2$$3$$(1,5,3)(2,10,12)$$\zeta_{3} + 1$
$2$$3$$(1,3,5)(2,12,10)$$-\zeta_{3}$
$2$$3$$(1,3,5)(2,12,10)(4,6,8)(7,11,9)$$-1$
$1$$6$$(1,12,5,2,3,10)(4,7,6,11,8,9)$$2 \zeta_{3} + 2$
$1$$6$$(1,10,3,2,5,12)(4,9,8,11,6,7)$$-2 \zeta_{3}$
$2$$6$$(1,12,5,2,3,10)(4,11)(6,9)(7,8)$$\zeta_{3}$
$2$$6$$(1,10,3,2,5,12)(4,11)(6,9)(7,8)$$-\zeta_{3} - 1$
$2$$6$$(1,10,3,2,5,12)(4,7,6,11,8,9)$$1$
$3$$6$$(1,4,5,6,3,8)(2,11,10,9,12,7)$$0$
$3$$6$$(1,8,3,6,5,4)(2,7,12,9,10,11)$$0$
$3$$6$$(1,9,5,7,3,11)(2,6,10,8,12,4)$$0$
$3$$6$$(1,11,3,7,5,9)(2,4,12,8,10,6)$$0$

The blue line marks the conjugacy class containing complex conjugation.