Properties

Label 2.13e2_83.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 13^{2} \cdot 83 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$14027= 13^{2} \cdot 83 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} + 68 x^{3} + 176 x^{2} - 199 x + 3879 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 36 + \left(19 a + 9\right)\cdot 47 + \left(43 a + 31\right)\cdot 47^{2} + \left(36 a + 35\right)\cdot 47^{3} + \left(20 a + 14\right)\cdot 47^{4} + \left(37 a + 6\right)\cdot 47^{5} + \left(6 a + 12\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 39 + \left(31 a + 28\right)\cdot 47 + \left(27 a + 18\right)\cdot 47^{2} + \left(11 a + 38\right)\cdot 47^{3} + \left(15 a + 5\right)\cdot 47^{4} + \left(2 a + 41\right)\cdot 47^{5} + \left(11 a + 45\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 42 a + 46 + \left(27 a + 42\right)\cdot 47 + \left(3 a + 4\right)\cdot 47^{2} + \left(10 a + 19\right)\cdot 47^{3} + \left(26 a + 19\right)\cdot 47^{4} + \left(9 a + 13\right)\cdot 47^{5} + \left(40 a + 35\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 39 + \left(18 a + 11\right)\cdot 47 + \left(34 a + 20\right)\cdot 47^{2} + \left(32 a + 38\right)\cdot 47^{3} + \left(28 a + 25\right)\cdot 47^{4} + \left(15 a + 23\right)\cdot 47^{5} + \left(21 a + 24\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 21 + \left(28 a + 11\right)\cdot 47 + \left(12 a + 23\right)\cdot 47^{2} + \left(14 a + 22\right)\cdot 47^{3} + \left(18 a + 3\right)\cdot 47^{4} + \left(31 a + 26\right)\cdot 47^{5} + \left(25 a + 4\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 8 + \left(15 a + 36\right)\cdot 47 + \left(19 a + 42\right)\cdot 47^{2} + \left(35 a + 33\right)\cdot 47^{3} + \left(31 a + 24\right)\cdot 47^{4} + \left(44 a + 30\right)\cdot 47^{5} + \left(35 a + 18\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,2)$
$(3,6,4)$
$(1,3)(2,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,3)(2,6)(4,5)$ $0$ $0$
$1$ $3$ $(1,2,5)(3,6,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,5,2)(3,4,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(3,6,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(3,4,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,5,2)(3,6,4)$ $-1$ $-1$
$3$ $6$ $(1,3,2,6,5,4)$ $0$ $0$
$3$ $6$ $(1,4,5,6,2,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.