Properties

Label 2.13e2_59.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 13^{2} \cdot 59 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$9971= 13^{2} \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 26 x^{4} - 34 x^{3} + 169 x^{2} - 107 x + 389 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 11 + \left(17 a + 21\right)\cdot 31 + \left(5 a + 1\right)\cdot 31^{2} + \left(22 a + 16\right)\cdot 31^{3} + 5\cdot 31^{4} + \left(13 a + 26\right)\cdot 31^{5} + 8\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 10 + \left(13 a + 10\right)\cdot 31 + \left(25 a + 26\right)\cdot 31^{2} + \left(8 a + 23\right)\cdot 31^{3} + \left(30 a + 15\right)\cdot 31^{4} + \left(17 a + 20\right)\cdot 31^{5} + \left(30 a + 27\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 9 + \left(10 a + 13\right)\cdot 31 + \left(11 a + 15\right)\cdot 31^{2} + \left(18 a + 29\right)\cdot 31^{3} + \left(a + 7\right)\cdot 31^{4} + \left(27 a + 22\right)\cdot 31^{5} + \left(29 a + 5\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 10 + \left(30 a + 24\right)\cdot 31 + \left(23 a + 17\right)\cdot 31^{2} + 26\cdot 31^{3} + \left(6 a + 29\right)\cdot 31^{4} + \left(29 a + 25\right)\cdot 31^{5} + \left(30 a + 20\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 19 + \left(20 a + 28\right)\cdot 31 + \left(19 a + 27\right)\cdot 31^{2} + \left(12 a + 23\right)\cdot 31^{3} + \left(29 a + 23\right)\cdot 31^{4} + \left(3 a + 12\right)\cdot 31^{5} + \left(a + 7\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 6 + 26\cdot 31 + \left(7 a + 3\right)\cdot 31^{2} + \left(30 a + 4\right)\cdot 31^{3} + \left(24 a + 10\right)\cdot 31^{4} + \left(a + 16\right)\cdot 31^{5} + 22\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5,4)$
$(1,3,6)$
$(1,5,6,2,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$ $0$
$1$ $3$ $(1,6,3)(2,4,5)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,6)(2,5,4)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,3,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,6,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,6,3)(2,5,4)$ $-1$ $-1$
$3$ $6$ $(1,5,6,2,3,4)$ $0$ $0$
$3$ $6$ $(1,4,3,2,6,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.