Properties

Label 2.13e2_31.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 13^{2} \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$5239= 13^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 15 x^{4} - 12 x^{3} - 18 x^{2} + 43 x + 38 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.13_31.6t1.4c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 50 a + 24 + \left(33 a + 38\right)\cdot 53 + \left(51 a + 26\right)\cdot 53^{2} + \left(27 a + 12\right)\cdot 53^{3} + \left(38 a + 19\right)\cdot 53^{4} + \left(32 a + 38\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 26 + \left(42 a + 52\right)\cdot 53 + \left(23 a + 31\right)\cdot 53^{2} + \left(30 a + 6\right)\cdot 53^{3} + \left(41 a + 37\right)\cdot 53^{4} + \left(12 a + 3\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 16 + \left(29 a + 6\right)\cdot 53 + \left(6 a + 42\right)\cdot 53^{2} + \left(48 a + 20\right)\cdot 53^{3} + \left(44 a + 38\right)\cdot 53^{4} + \left(47 a + 45\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 33 + \left(10 a + 47\right)\cdot 53 + \left(29 a + 31\right)\cdot 53^{2} + \left(22 a + 51\right)\cdot 53^{3} + \left(11 a + 13\right)\cdot 53^{4} + \left(40 a + 13\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 51 + \left(23 a + 48\right)\cdot 53 + \left(46 a + 38\right)\cdot 53^{2} + \left(4 a + 47\right)\cdot 53^{3} + \left(8 a + 10\right)\cdot 53^{4} + \left(5 a + 33\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 12 + \left(19 a + 18\right)\cdot 53 + \left(a + 40\right)\cdot 53^{2} + \left(25 a + 19\right)\cdot 53^{3} + \left(14 a + 39\right)\cdot 53^{4} + \left(20 a + 24\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(2,5,6)$
$(1,6,4,2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$1$$3$$(1,4,3)(2,5,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,3,4)(2,6,5)$$2 \zeta_{3}$
$2$$3$$(1,3,4)$$\zeta_{3} + 1$
$2$$3$$(1,4,3)$$-\zeta_{3}$
$2$$3$$(1,3,4)(2,5,6)$$-1$
$3$$6$$(1,6,4,2,3,5)$$0$
$3$$6$$(1,5,3,2,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.