Properties

Label 2.13e2_23.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 13^{2} \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$3887= 13^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 12 x^{7} - 26 x^{6} + 32 x^{5} - 59 x^{4} - 3 x^{3} - 176 x^{2} - 89 x - 125 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{3} + 3 x + 99 $
Roots:
$r_{ 1 }$ $=$ $ 47 a^{2} + 71 a + 69 + \left(45 a^{2} + 67 a + 10\right)\cdot 101 + \left(37 a^{2} + 64 a + 2\right)\cdot 101^{2} + \left(56 a^{2} + 9 a + 41\right)\cdot 101^{3} + \left(84 a^{2} + 53 a + 84\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 94 a^{2} + 17 a + 2 + \left(73 a^{2} + 13 a + 84\right)\cdot 101 + \left(20 a^{2} + 49 a + 61\right)\cdot 101^{2} + \left(45 a^{2} + 100 a + 67\right)\cdot 101^{3} + \left(34 a^{2} + 19 a + 48\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 a^{2} + 77 a + 90 + \left(13 a + 37\right)\cdot 101 + \left(27 a^{2} + 85 a + 74\right)\cdot 101^{2} + \left(83 a^{2} + 45 a + 42\right)\cdot 101^{3} + \left(50 a^{2} + 46 a + 81\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 75 a^{2} + 82 a + 93 + \left(17 a^{2} + 88 a + 44\right)\cdot 101 + \left(86 a^{2} + 94 a + 56\right)\cdot 101^{2} + \left(9 a^{2} + 22 a + 80\right)\cdot 101^{3} + \left(49 a^{2} + 10 a + 34\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a^{2} + 24 a + 96 + \left(46 a^{2} + 90 a + 11\right)\cdot 101 + \left(91 a^{2} + 37 a + 9\right)\cdot 101^{2} + \left(81 a^{2} + 91 a + 92\right)\cdot 101^{3} + \left(46 a^{2} + 97 a + 8\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 a^{2} + 6 a + 63 + \left(9 a^{2} + 44 a + 39\right)\cdot 101 + \left(73 a^{2} + 99 a + 73\right)\cdot 101^{2} + \left(63 a^{2} + 100 a + 55\right)\cdot 101^{3} + \left(70 a^{2} + 50 a + 56\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 88 a^{2} + 54 a + 18 + \left(48 a^{2} + 81 a + 6\right)\cdot 101 + \left(26 a^{2} + a + 38\right)\cdot 101^{2} + \left(12 a^{2} + 61 a + 85\right)\cdot 101^{3} + \left(42 a^{2} + 94 a + 20\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 39 a^{2} + 66 a + 21 + \left(34 a^{2} + 31 a + 78\right)\cdot 101 + \left(89 a^{2} + 4 a + 62\right)\cdot 101^{2} + \left(78 a^{2} + 17 a + 16\right)\cdot 101^{3} + \left(9 a^{2} + 97 a + 57\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 71 a^{2} + 7 a + 57 + \left(26 a^{2} + 74 a + 90\right)\cdot 101 + \left(53 a^{2} + 67 a + 25\right)\cdot 101^{2} + \left(73 a^{2} + 55 a + 23\right)\cdot 101^{3} + \left(15 a^{2} + 34 a + 11\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7,2,6,4,9,5,8,3)$
$(1,9)(2,6)(3,5)(4,7)$
$(1,6,5)(2,9,3)(4,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,9)(2,6)(3,5)(4,7)$$0$
$2$$3$$(1,6,5)(2,9,3)(4,8,7)$$-1$
$2$$9$$(1,7,2,6,4,9,5,8,3)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,2,4,5,3,7,6,9,8)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,4,3,6,8,2,5,7,9)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.