Properties

Label 2.13e2_23.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 13^{2} \cdot 23 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$3887= 13^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 3 x^{6} - 2 x^{5} + 9 x^{4} + 22 x^{3} - 12 x^{2} - 34 x - 23 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 173 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 29 + 75\cdot 173 + 137\cdot 173^{2} + 169\cdot 173^{3} + 68\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 47 + 41\cdot 173 + 16\cdot 173^{2} + 141\cdot 173^{3} + 45\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 141\cdot 173 + 123\cdot 173^{2} + 43\cdot 173^{3} + 146\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 70 + 14\cdot 173 + 47\cdot 173^{2} + 148\cdot 173^{3} + 109\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 98 + 23\cdot 173 + 131\cdot 173^{2} + 85\cdot 173^{3} + 24\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 105 + 34\cdot 173 + 120\cdot 173^{2} + 54\cdot 173^{3} + 130\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 143 + 64\cdot 173 + 40\cdot 173^{2} + 25\cdot 173^{3} + 7\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 144 + 123\cdot 173 + 75\cdot 173^{2} + 23\cdot 173^{3} + 159\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,4,7)(2,6,5,3)$
$(1,5,4,2)(3,8,6,7)$
$(1,8)(2,5)(4,7)$
$(1,4)(2,5)(3,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $-2$ $-2$
$4$ $2$ $(1,8)(2,5)(4,7)$ $0$ $0$
$2$ $4$ $(1,8,4,7)(2,6,5,3)$ $0$ $0$
$4$ $4$ $(1,5,4,2)(3,8,6,7)$ $0$ $0$
$2$ $8$ $(1,2,8,6,4,5,7,3)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,5,8,3,4,2,7,6)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.