Properties

Label 2.13e2_19.6t5.2c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 13^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$3211= 13^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} - 7 x^{7} + 20 x^{6} - 18 x^{5} + 26 x^{4} - 46 x^{3} + 29 x^{2} + 14 x - 25 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.13_19.6t1.6c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ a^{2} + 9 a + 11 + \left(16 a^{2} + 10\right)\cdot 17 + \left(3 a + 9\right)\cdot 17^{2} + \left(5 a^{2} + a + 14\right)\cdot 17^{3} + \left(7 a^{2} + a + 3\right)\cdot 17^{4} + \left(a^{2} + 13 a + 15\right)\cdot 17^{5} + \left(8 a^{2} + 10 a + 11\right)\cdot 17^{6} + \left(9 a^{2} + 4 a + 16\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{2} + 10 a + 7 + \left(11 a^{2} + 6 a + 15\right)\cdot 17 + \left(11 a^{2} + 16 a + 6\right)\cdot 17^{2} + \left(11 a^{2} + a + 12\right)\cdot 17^{3} + \left(16 a^{2} + 5 a + 6\right)\cdot 17^{4} + \left(16 a^{2} + 5 a + 12\right)\cdot 17^{5} + \left(5 a^{2} + 9 a + 1\right)\cdot 17^{6} + \left(5 a^{2} + 14 a + 14\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 8 a^{2} + 10 a + 2 + \left(15 a + 15\right)\cdot 17 + \left(3 a^{2} + 10 a + 10\right)\cdot 17^{2} + \left(9 a^{2} + 14 a + 1\right)\cdot 17^{3} + \left(4 a^{2} + 16 a + 14\right)\cdot 17^{4} + \left(4 a + 1\right)\cdot 17^{5} + \left(11 a^{2} + 8 a + 3\right)\cdot 17^{6} + \left(12 a^{2} + 13 a + 10\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 10 a^{2} + 9 a + 6 + \left(2 a^{2} + a + 15\right)\cdot 17 + \left(16 a^{2} + 3 a + 9\right)\cdot 17^{2} + \left(8 a^{2} + 10 a + 10\right)\cdot 17^{3} + \left(13 a^{2} + 2 a + 4\right)\cdot 17^{4} + \left(3 a^{2} + 15 a + 9\right)\cdot 17^{5} + \left(11 a^{2} + 5 a + 16\right)\cdot 17^{6} + \left(10 a^{2} + 13 a + 11\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 7 a^{2} + 5 a + 15 + \left(5 a^{2} + a + 14\right)\cdot 17 + \left(13 a^{2} + 11 a\right)\cdot 17^{2} + \left(4 a^{2} + 13 a + 3\right)\cdot 17^{3} + \left(11 a + 16\right)\cdot 17^{4} + \left(a^{2} + 5 a + 14\right)\cdot 17^{5} + \left(4 a^{2} + 15 a + 14\right)\cdot 17^{6} + \left(3 a^{2} + 15 a + 6\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{2} + 3 a + 5 + \left(12 a^{2} + 15 a + 8\right)\cdot 17 + \left(2 a^{2} + 2 a + 16\right)\cdot 17^{2} + \left(7 a^{2} + 2 a + 15\right)\cdot 17^{3} + \left(9 a^{2} + 4 a + 10\right)\cdot 17^{4} + \left(14 a^{2} + 15 a + 12\right)\cdot 17^{5} + \left(4 a^{2} + 7 a + 9\right)\cdot 17^{6} + \left(4 a^{2} + 13 a + 7\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + 15 a + 2 + \left(3 a^{2} + 8 a + 10\right)\cdot 17 + \left(6 a^{2} + 14 a + 14\right)\cdot 17^{2} + \left(13 a^{2} + 4 a + 7\right)\cdot 17^{3} + \left(3 a^{2} + 9 a + 9\right)\cdot 17^{4} + \left(13 a^{2} + 13 a + 15\right)\cdot 17^{5} + \left(16 a^{2} + a + 8\right)\cdot 17^{6} + \left(6 a + 5\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + 14 a + 1 + \left(7 a^{2} + 2 a + 3\right)\cdot 17 + \left(12 a^{2} + 11 a\right)\cdot 17^{2} + \left(13 a^{2} + 16\right)\cdot 17^{3} + \left(9 a^{2} + 10 a + 11\right)\cdot 17^{4} + \left(15 a^{2} + 3 a\right)\cdot 17^{5} + \left(12 a^{2} + 12 a + 10\right)\cdot 17^{6} + \left(a^{2} + 4 a + 8\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 11 a^{2} + 10 a + 4 + \left(8 a^{2} + 15 a + 9\right)\cdot 17 + \left(a^{2} + 11 a + 15\right)\cdot 17^{2} + \left(11 a^{2} + a + 2\right)\cdot 17^{3} + \left(2 a^{2} + 7 a + 7\right)\cdot 17^{4} + \left(a^{2} + 8 a + 2\right)\cdot 17^{5} + \left(10 a^{2} + 13 a + 8\right)\cdot 17^{6} + \left(2 a^{2} + 15 a + 3\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3)(4,9)(5,7)$
$(2,3)(4,6)(5,8)$
$(1,5,9,3,7,4)(2,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,3)(4,9)(5,7)$$0$
$1$$3$$(1,9,7)(2,6,8)(3,4,5)$$-2 \zeta_{3} - 2$
$1$$3$$(1,7,9)(2,8,6)(3,5,4)$$2 \zeta_{3}$
$2$$3$$(1,2,3)(4,9,6)(5,7,8)$$-1$
$2$$3$$(1,8,4)(2,5,9)(3,7,6)$$-\zeta_{3}$
$2$$3$$(1,4,8)(2,9,5)(3,6,7)$$\zeta_{3} + 1$
$3$$6$$(1,5,9,3,7,4)(2,8,6)$$0$
$3$$6$$(1,4,7,3,9,5)(2,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.