Properties

Label 2.13e2_19.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 13^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$3211= 13^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 20 x^{4} + 58 x^{3} + 135 x^{2} - 512 x + 404 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.13_19.6t1.6c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 41 a + 3 + \left(25 a + 23\right)\cdot 47 + \left(13 a + 35\right)\cdot 47^{2} + \left(10 a + 15\right)\cdot 47^{3} + 23\cdot 47^{4} + \left(25 a + 33\right)\cdot 47^{5} + \left(44 a + 4\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 38 + \left(21 a + 33\right)\cdot 47 + \left(33 a + 36\right)\cdot 47^{2} + \left(36 a + 22\right)\cdot 47^{3} + \left(46 a + 13\right)\cdot 47^{4} + \left(21 a + 36\right)\cdot 47^{5} + \left(2 a + 21\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 4 + \left(46 a + 20\right)\cdot 47 + \left(32 a + 4\right)\cdot 47^{2} + \left(26 a + 19\right)\cdot 47^{3} + \left(29 a + 24\right)\cdot 47^{4} + \left(31 a + 34\right)\cdot 47^{5} + \left(17 a + 40\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 5 + \left(25 a + 18\right)\cdot 47 + \left(46 a + 33\right)\cdot 47^{2} + \left(36 a + 31\right)\cdot 47^{3} + \left(29 a + 23\right)\cdot 47^{4} + \left(9 a + 36\right)\cdot 47^{5} + \left(15 a + 27\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 5 + 42\cdot 47 + \left(14 a + 23\right)\cdot 47^{2} + \left(20 a + 39\right)\cdot 47^{3} + \left(17 a + 9\right)\cdot 47^{4} + \left(15 a + 21\right)\cdot 47^{5} + \left(29 a + 44\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 41 + \left(21 a + 3\right)\cdot 47 + 7\cdot 47^{2} + \left(10 a + 12\right)\cdot 47^{3} + \left(17 a + 46\right)\cdot 47^{4} + \left(37 a + 25\right)\cdot 47^{5} + \left(31 a + 1\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,6)$
$(2,4,5)$
$(1,5,6,2,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$1$$3$$(1,6,3)(2,4,5)$$-2 \zeta_{3} - 2$
$1$$3$$(1,3,6)(2,5,4)$$2 \zeta_{3}$
$2$$3$$(1,3,6)$$\zeta_{3} + 1$
$2$$3$$(1,6,3)$$-\zeta_{3}$
$2$$3$$(1,3,6)(2,4,5)$$-1$
$3$$6$$(1,5,6,2,3,4)$$0$
$3$$6$$(1,4,3,2,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.