Properties

Label 2.13_53.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 13 \cdot 53 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$689= 13 \cdot 53 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 5 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 37 + 33\cdot 113 + 31\cdot 113^{2} + 96\cdot 113^{3} + 72\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 + 72\cdot 113 + 18\cdot 113^{2} + 22\cdot 113^{3} + 59\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 58 + 18\cdot 113 + 63\cdot 113^{2} + 110\cdot 113^{3} + 105\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 83 + 101\cdot 113 + 112\cdot 113^{2} + 109\cdot 113^{3} + 100\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.