Properties

Label 2.13_23.8t6.2
Dimension 2
Group $D_{8}$
Conductor $ 13 \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$299= 13 \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} - x^{4} - x^{3} + 7 x^{2} + 2 x + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 2\cdot 131 + 114\cdot 131^{2} + 123\cdot 131^{3} + 120\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 32\cdot 131 + 49\cdot 131^{2} + 67\cdot 131^{3} + 26\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 82\cdot 131 + 71\cdot 131^{2} + 8\cdot 131^{3} + 89\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 + 127\cdot 131 + 31\cdot 131^{2} + 95\cdot 131^{3} + 4\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 85 + 27\cdot 131 + 63\cdot 131^{2} + 60\cdot 131^{3} + 101\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 96 + 62\cdot 131 + 46\cdot 131^{2} + 35\cdot 131^{3} + 128\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 109 + 120\cdot 131 + 37\cdot 131^{2} + 2\cdot 131^{3} + 31\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 127 + 68\cdot 131 + 109\cdot 131^{2} + 130\cdot 131^{3} + 21\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6)(3,7)(5,8)$
$(1,6)(2,4)(3,8)(5,7)$
$(1,2,6,4)(3,7,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $-2$ $-2$
$4$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $0$ $0$
$4$ $2$ $(1,6)(3,7)(5,8)$ $0$ $0$
$2$ $4$ $(1,2,6,4)(3,7,8,5)$ $0$ $0$
$2$ $8$ $(1,5,4,8,6,7,2,3)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,8,2,5,6,3,4,7)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.