Properties

Label 2.13_23.8t6.1c1
Dimension 2
Group $D_{8}$
Conductor $ 13 \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$299= 13 \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 5 x^{6} + 6 x^{5} + 2 x^{4} - 10 x^{3} - 7 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.13_23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 29 + 36\cdot 131 + 66\cdot 131^{2} + 131^{3} + 76\cdot 131^{4} + 87\cdot 131^{5} +O\left(131^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 43 + 30\cdot 131 + 60\cdot 131^{2} + 49\cdot 131^{3} + 41\cdot 131^{4} + 36\cdot 131^{5} +O\left(131^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 56 + 83\cdot 131 + 107\cdot 131^{2} + 99\cdot 131^{3} + 65\cdot 131^{4} + 112\cdot 131^{5} +O\left(131^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 57 + 75\cdot 131 + 95\cdot 131^{2} + 71\cdot 131^{3} + 18\cdot 131^{4} + 57\cdot 131^{5} +O\left(131^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 62 + 24\cdot 131 + 112\cdot 131^{2} + 74\cdot 131^{3} + 67\cdot 131^{4} + 93\cdot 131^{5} +O\left(131^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 80 + 100\cdot 131 + 97\cdot 131^{2} + 129\cdot 131^{3} + 80\cdot 131^{4} + 103\cdot 131^{5} +O\left(131^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 91 + 49\cdot 131 + 77\cdot 131^{2} + 13\cdot 131^{3} + 71\cdot 131^{4} + 131^{5} +O\left(131^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 107 + 123\cdot 131 + 37\cdot 131^{2} + 83\cdot 131^{3} + 102\cdot 131^{4} + 31\cdot 131^{5} +O\left(131^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,8)(3,5)(4,7)$
$(1,4,5,2)(3,7,6,8)$
$(2,4)(3,7)(6,8)$
$(1,5)(2,4)(3,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,6)(7,8)$$-2$
$4$$2$$(1,6)(2,8)(3,5)(4,7)$$0$
$4$$2$$(2,4)(3,7)(6,8)$$0$
$2$$4$$(1,4,5,2)(3,7,6,8)$$0$
$2$$8$$(1,8,4,3,5,7,2,6)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,3,2,8,5,6,4,7)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.