Properties

Label 2.13_23.4t3.3
Dimension 2
Group $D_4$
Conductor $ 13 \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$299= 13 \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} - 18 x^{5} - 22 x^{4} + 36 x^{3} + 133 x^{2} + 234 x + 468 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 98\cdot 131 + 106\cdot 131^{2} + 40\cdot 131^{3} + 95\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 4\cdot 131 + 113\cdot 131^{2} + 82\cdot 131^{3} + 105\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 + 22\cdot 131 + 45\cdot 131^{2} + 62\cdot 131^{3} + 75\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 60 + 90\cdot 131 + 2\cdot 131^{2} + 63\cdot 131^{3} + 98\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 67 + 106\cdot 131 + 6\cdot 131^{2} + 64\cdot 131^{3} + 15\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 94 + 42\cdot 131 + 76\cdot 131^{2} + 72\cdot 131^{3} + 72\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 103 + 53\cdot 131 + 56\cdot 131^{2} + 41\cdot 131^{3} + 102\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 127 + 105\cdot 131 + 116\cdot 131^{2} + 96\cdot 131^{3} + 89\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,6,5,4)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,5)(4,6)$ $-2$
$2$ $2$ $(1,3)(2,4)(5,8)(6,7)$ $0$
$2$ $2$ $(1,4)(2,5)(3,7)(6,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,6,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.