Properties

Label 2.13_19e2.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 13 \cdot 19^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$4693= 13 \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 21 x^{4} - 68 x^{3} + 341 x^{2} - 594 x + 368 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 7 + \left(5 a + 6\right)\cdot 7^{2} + \left(3 a + 5\right)\cdot 7^{3} + 3\cdot 7^{4} + \left(5 a + 5\right)\cdot 7^{5} + 4 a\cdot 7^{6} + \left(2 a + 4\right)\cdot 7^{7} + \left(5 a + 3\right)\cdot 7^{8} + 5\cdot 7^{9} + 5 a\cdot 7^{10} + \left(5 a + 2\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 3 + \left(6 a + 5\right)\cdot 7 + \left(a + 3\right)\cdot 7^{2} + \left(3 a + 4\right)\cdot 7^{3} + 6 a\cdot 7^{4} + \left(a + 3\right)\cdot 7^{5} + 2 a\cdot 7^{6} + \left(4 a + 2\right)\cdot 7^{7} + \left(a + 6\right)\cdot 7^{8} + 6 a\cdot 7^{9} + \left(a + 5\right)\cdot 7^{10} + \left(a + 2\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 5 + 4 a\cdot 7 + \left(a + 6\right)\cdot 7^{2} + 5 a\cdot 7^{3} + \left(3 a + 2\right)\cdot 7^{4} + \left(6 a + 4\right)\cdot 7^{5} + 6 a\cdot 7^{6} + \left(4 a + 6\right)\cdot 7^{7} + \left(a + 4\right)\cdot 7^{8} + \left(4 a + 1\right)\cdot 7^{9} + \left(6 a + 4\right)\cdot 7^{10} + \left(3 a + 1\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 5 a + \left(4 a + 3\right)\cdot 7 + \left(6 a + 3\right)\cdot 7^{2} + \left(4 a + 3\right)\cdot 7^{3} + 5\cdot 7^{4} + \left(4 a + 5\right)\cdot 7^{5} + \left(a + 6\right)\cdot 7^{6} + \left(3 a + 4\right)\cdot 7^{7} + \left(a + 6\right)\cdot 7^{8} + \left(2 a + 3\right)\cdot 7^{9} + \left(2 a + 5\right)\cdot 7^{10} + \left(4 a + 6\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 2 + \left(2 a + 1\right)\cdot 7 + \left(5 a + 3\right)\cdot 7^{2} + \left(a + 4\right)\cdot 7^{3} + 3 a\cdot 7^{4} + 7^{6} + \left(2 a + 4\right)\cdot 7^{7} + \left(5 a + 1\right)\cdot 7^{8} + \left(2 a + 4\right)\cdot 7^{9} + 6\cdot 7^{10} + \left(3 a + 5\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 5 + \left(2 a + 2\right)\cdot 7 + 5\cdot 7^{2} + \left(2 a + 1\right)\cdot 7^{3} + \left(6 a + 1\right)\cdot 7^{4} + \left(2 a + 2\right)\cdot 7^{5} + \left(5 a + 4\right)\cdot 7^{6} + \left(3 a + 6\right)\cdot 7^{7} + \left(5 a + 4\right)\cdot 7^{8} + \left(4 a + 4\right)\cdot 7^{9} + \left(4 a + 5\right)\cdot 7^{10} + \left(2 a + 1\right)\cdot 7^{11} +O\left(7^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,3,2,6,5)$
$(2,4,5)$
$(1,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$ $0$
$1$ $3$ $(1,3,6)(2,5,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,6,3)(2,4,5)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,3,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,6,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,3,6)(2,4,5)$ $-1$ $-1$
$3$ $6$ $(1,4,3,2,6,5)$ $0$ $0$
$3$ $6$ $(1,5,6,2,3,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.