Properties

Label 2.13_19.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 13 \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$247= 13 \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 6 x^{4} - 7 x^{3} + 7 x^{2} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.13_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 27 + \left(7 a + 17\right)\cdot 29 + \left(3 a + 14\right)\cdot 29^{2} + \left(11 a + 3\right)\cdot 29^{3} + \left(11 a + 4\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 24 + \left(7 a + 20\right)\cdot 29 + \left(3 a + 5\right)\cdot 29^{2} + \left(11 a + 2\right)\cdot 29^{3} + \left(11 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 6 + \left(21 a + 8\right)\cdot 29 + \left(25 a + 23\right)\cdot 29^{2} + \left(17 a + 26\right)\cdot 29^{3} + \left(17 a + 20\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 + 12\cdot 29 + 20\cdot 29^{2} + 7\cdot 29^{3} + 15\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 3 + \left(21 a + 11\right)\cdot 29 + \left(25 a + 14\right)\cdot 29^{2} + \left(17 a + 25\right)\cdot 29^{3} + \left(17 a + 24\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 + 16\cdot 29 + 8\cdot 29^{2} + 21\cdot 29^{3} + 13\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,6)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,6)$$-2$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$3$$2$$(1,4)(5,6)$$0$
$2$$3$$(1,3,4)(2,6,5)$$-1$
$2$$6$$(1,6,3,5,4,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.