Properties

Label 2.13_17e2.8t7.1c2
Dimension 2
Group $C_8:C_2$
Conductor $ 13 \cdot 17^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$3757= 13 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 10 x^{6} - 11 x^{5} + 15 x^{4} + 7 x^{3} + 24 x^{2} + 21 x + 103 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even
Determinant: 1.13_17.4t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 48\cdot 101 + 11\cdot 101^{2} + 56\cdot 101^{3} + 88\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 47 + 85\cdot 101 + 71\cdot 101^{2} + 10\cdot 101^{3} + 41\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 51 + 97\cdot 101 + 62\cdot 101^{2} + 56\cdot 101^{3} + 10\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 62 + 30\cdot 101 + 60\cdot 101^{2} + 14\cdot 101^{3} + 66\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 79 + 38\cdot 101 + 77\cdot 101^{2} + 10\cdot 101^{3} + 92\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 80 + 63\cdot 101 + 76\cdot 101^{2} + 15\cdot 101^{3} + 35\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 82 + 18\cdot 101 + 37\cdot 101^{2} + 7\cdot 101^{3} + 12\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 99 + 20\cdot 101 + 6\cdot 101^{2} + 30\cdot 101^{3} + 58\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,8,2)(3,4,7,6)$
$(1,7,2,6,8,3,5,4)$
$(3,7)(4,6)$
$(1,8)(2,5)(3,7)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,5)(3,7)(4,6)$$-2$
$2$$2$$(3,7)(4,6)$$0$
$1$$4$$(1,2,8,5)(3,4,7,6)$$-2 \zeta_{4}$
$1$$4$$(1,5,8,2)(3,6,7,4)$$2 \zeta_{4}$
$2$$4$$(1,5,8,2)(3,4,7,6)$$0$
$2$$8$$(1,7,2,6,8,3,5,4)$$0$
$2$$8$$(1,6,5,7,8,4,2,3)$$0$
$2$$8$$(1,6,2,3,8,4,5,7)$$0$
$2$$8$$(1,3,5,6,8,7,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.