Properties

Label 2.13_17e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 13 \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3757= 13 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} + x^{6} - 23 x^{4} + 16 x^{2} + 256 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 13\cdot 43 + 35\cdot 43^{2} + 5\cdot 43^{3} + 18\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 19\cdot 43 + 26\cdot 43^{2} + 13\cdot 43^{3} + 15\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 42\cdot 43 + 2\cdot 43^{2} + 3\cdot 43^{3} + 22\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 + 3\cdot 43 + 27\cdot 43^{2} + 9\cdot 43^{3} + 24\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 + 39\cdot 43 + 15\cdot 43^{2} + 33\cdot 43^{3} + 18\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 + 40\cdot 43^{2} + 39\cdot 43^{3} + 20\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 31 + 23\cdot 43 + 16\cdot 43^{2} + 29\cdot 43^{3} + 27\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 37 + 29\cdot 43 + 7\cdot 43^{2} + 37\cdot 43^{3} + 24\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3,4,7)(2,8,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,7)(5,8)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,8)(2,3)(4,5)(6,7)$$0$
$2$$4$$(1,3,4,7)(2,8,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.