Properties

Label 2.13_17.4t3.3
Dimension 2
Group $D_4$
Conductor $ 13 \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$221= 13 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} + x^{6} - 4 x^{5} - 38 x^{4} - 2 x^{3} + 123 x^{2} - 34 x + 17 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 98\cdot 103 + 44\cdot 103^{2} + 47\cdot 103^{3} + 36\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 45\cdot 103 + 43\cdot 103^{2} + 23\cdot 103^{3} + 47\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 + 87\cdot 103 + 21\cdot 103^{2} + 20\cdot 103^{3} + 20\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 + 31\cdot 103 + 91\cdot 103^{2} + 95\cdot 103^{3} + 13\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 + 17\cdot 103 + 20\cdot 103^{2} + 40\cdot 103^{3} + 99\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 + 56\cdot 103 + 30\cdot 103^{2} + 39\cdot 103^{3} + 76\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 84 + 19\cdot 103 + 39\cdot 103^{2} + 23\cdot 103^{3} + 79\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 93 + 55\cdot 103 + 17\cdot 103^{2} + 19\cdot 103^{3} + 39\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,6)(4,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,8)(5,7)$ $0$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,7,4,6)(2,3,8,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.