Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 14\cdot 53 + 12\cdot 53^{2} + 27\cdot 53^{3} + 34\cdot 53^{4} + 31\cdot 53^{5} +O\left(53^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 14 + 49\cdot 53 + 16\cdot 53^{2} + 6\cdot 53^{3} + 43\cdot 53^{4} + 43\cdot 53^{5} +O\left(53^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 19 + 24\cdot 53 + 44\cdot 53^{2} + 12\cdot 53^{3} + 51\cdot 53^{4} + 20\cdot 53^{5} +O\left(53^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 20 + 11\cdot 53 + 36\cdot 53^{2} + 17\cdot 53^{3} + 3\cdot 53^{4} + 11\cdot 53^{5} +O\left(53^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 33 + 41\cdot 53 + 16\cdot 53^{2} + 35\cdot 53^{3} + 49\cdot 53^{4} + 41\cdot 53^{5} +O\left(53^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 34 + 28\cdot 53 + 8\cdot 53^{2} + 40\cdot 53^{3} + 53^{4} + 32\cdot 53^{5} +O\left(53^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 39 + 3\cdot 53 + 36\cdot 53^{2} + 46\cdot 53^{3} + 9\cdot 53^{4} + 9\cdot 53^{5} +O\left(53^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 45 + 38\cdot 53 + 40\cdot 53^{2} + 25\cdot 53^{3} + 18\cdot 53^{4} + 21\cdot 53^{5} +O\left(53^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,3,8,6)(2,5,7,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,3)(4,8)(6,7)$ | $0$ |
| $2$ | $4$ | $(1,3,8,6)(2,5,7,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.