Properties

Label 2.13_113.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 13 \cdot 113 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1469= 13 \cdot 113 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 7 x^{2} + 8 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.13_113.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 12\cdot 53 + 32\cdot 53^{2} + 3\cdot 53^{3} + 28\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 5\cdot 53 + 31\cdot 53^{2} + 44\cdot 53^{3} + 19\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 40\cdot 53 + 35\cdot 53^{2} + 23\cdot 53^{3} + 28\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 + 47\cdot 53 + 6\cdot 53^{2} + 34\cdot 53^{3} + 29\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.