Properties

Label 2.1399.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 1399 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1399 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 3 x^{7} + 13 x^{6} - 21 x^{5} - 4 x^{4} + 65 x^{3} - 56 x^{2} + 10 x - 9 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.1399.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 22 a^{2} + 20 a + 22 + \left(6 a^{2} + 17 a + 16\right)\cdot 23 + \left(4 a^{2} + 6 a + 5\right)\cdot 23^{2} + \left(4 a^{2} + 11 a + 13\right)\cdot 23^{3} + \left(22 a^{2} + 13 a + 6\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a^{2} + 11 a + 21 + \left(8 a^{2} + 14 a + 10\right)\cdot 23 + \left(6 a^{2} + 13 a + 8\right)\cdot 23^{2} + \left(6 a^{2} + 19 a + 8\right)\cdot 23^{3} + \left(6 a^{2} + 17 a + 8\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 a^{2} + 4 a + 18 + \left(12 a^{2} + 15 a + 1\right)\cdot 23 + \left(12 a^{2} + 12 a + 9\right)\cdot 23^{2} + \left(10 a^{2} + 3 a + 6\right)\cdot 23^{3} + \left(21 a^{2} + 13 a + 13\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a^{2} + 18 a + 12 + 6 a^{2}23 + \left(10 a^{2} + 17 a + 6\right)\cdot 23^{2} + \left(19 a^{2} + 8 a + 18\right)\cdot 23^{3} + \left(2 a^{2} + 13 a + 3\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 3 a + 16 + \left(20 a^{2} + 11\right)\cdot 23 + \left(8 a^{2} + 13 a + 19\right)\cdot 23^{2} + \left(18 a^{2} + a + 16\right)\cdot 23^{3} + \left(18 a^{2} + 19 a + 9\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 8 + \left(2 a^{2} + 16 a + 10\right)\cdot 23 + \left(4 a^{2} + 19 a + 5\right)\cdot 23^{2} + \left(6 a^{2} + 22 a + 8\right)\cdot 23^{3} + \left(18 a^{2} + 14 a + 1\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 21 a^{2} + 8 a + 13 + \left(9 a^{2} + 4 a + 5\right)\cdot 23 + \left(8 a^{2} + 22 a + 11\right)\cdot 23^{2} + \left(22 a^{2} + 2 a + 14\right)\cdot 23^{3} + \left(20 a^{2} + 19 a + 12\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 16 a^{2} + 9 a + 14 + \left(12 a^{2} + 21 a + 1\right)\cdot 23 + \left(2 a^{2} + 14 a + 11\right)\cdot 23^{2} + \left(22 a^{2} + a + 6\right)\cdot 23^{3} + \left(7 a^{2} + 4 a + 18\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 9 }$ $=$ $ a^{2} + 11 a + 17 + \left(13 a^{2} + a + 9\right)\cdot 23 + \left(11 a^{2} + 18 a + 15\right)\cdot 23^{2} + \left(5 a^{2} + 19 a + 22\right)\cdot 23^{3} + \left(19 a^{2} + 22 a + 17\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,2,4,8,6,7,5,3)$
$(1,2)(3,4)(5,8)(6,7)$
$(1,4,7)(2,6,3)(5,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,2)(3,4)(5,8)(6,7)$$0$
$2$$3$$(1,4,7)(2,6,3)(5,9,8)$$-1$
$2$$9$$(1,9,2,4,8,6,7,5,3)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,2,8,7,3,9,4,6,5)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,8,3,4,5,2,7,9,6)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.