Properties

Label 2.1399.24t22.2c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 1399 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1399 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 9 x^{6} - 5 x^{5} - 11 x^{4} + 40 x^{3} - 47 x^{2} + 41 x - 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.1399.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 26 + \left(45 a + 27\right)\cdot 47 + \left(44 a + 17\right)\cdot 47^{2} + \left(28 a + 4\right)\cdot 47^{3} + \left(39 a + 17\right)\cdot 47^{4} + \left(36 a + 42\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 43 + 23\cdot 47 + 26\cdot 47^{2} + 17\cdot 47^{3} + 5\cdot 47^{4} + 26\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 2 + \left(35 a + 15\right)\cdot 47 + \left(19 a + 2\right)\cdot 47^{2} + \left(29 a + 21\right)\cdot 47^{3} + \left(46 a + 24\right)\cdot 47^{4} + \left(26 a + 26\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 10 + 43\cdot 47 + 37\cdot 47^{2} + 4\cdot 47^{3} +O\left(47^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 30 + \left(11 a + 24\right)\cdot 47 + \left(27 a + 6\right)\cdot 47^{2} + \left(17 a + 13\right)\cdot 47^{3} + 41\cdot 47^{4} + \left(20 a + 33\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 44 a + 31 + \left(a + 22\right)\cdot 47 + 18\cdot 47^{2} + \left(22 a + 9\right)\cdot 47^{3} + \left(20 a + 30\right)\cdot 47^{4} + \left(3 a + 21\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 3 a + 25 + \left(45 a + 29\right)\cdot 47 + \left(46 a + 16\right)\cdot 47^{2} + \left(24 a + 6\right)\cdot 47^{3} + \left(26 a + 2\right)\cdot 47^{4} + \left(43 a + 8\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 24 a + 25 + \left(a + 1\right)\cdot 47 + \left(2 a + 15\right)\cdot 47^{2} + \left(18 a + 17\right)\cdot 47^{3} + \left(7 a + 20\right)\cdot 47^{4} + \left(10 a + 29\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,8,6)(2,7,4,3)$
$(1,5)(2,4)(6,8)$
$(1,6,2)(4,8,5)$
$(1,3,8,7)(2,5,4,6)$
$(1,8)(2,4)(3,7)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,4)(3,7)(5,6)$$-2$
$12$$2$$(1,5)(2,4)(6,8)$$0$
$8$$3$$(2,5,3)(4,6,7)$$-1$
$6$$4$$(1,5,8,6)(2,7,4,3)$$0$
$8$$6$$(1,8)(2,7,5,4,3,6)$$1$
$6$$8$$(1,4,5,3,8,2,6,7)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,2,5,7,8,4,6,3)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.