Properties

Label 2.1391.4t3.a
Dimension $2$
Group $D_{4}$
Conductor $1391$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(1391\)\(\medspace = 13 \cdot 107 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.2.18083.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{13}, \sqrt{-107})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 4 + 14\cdot 23 + 10\cdot 23^{2} + 8\cdot 23^{3} + 4\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 + 19\cdot 23 + 20\cdot 23^{2} + 4\cdot 23^{3} + 7\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 12 + 5\cdot 23 + 8\cdot 23^{2} + 16\cdot 23^{3} + 17\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 20 + 6\cdot 23 + 6\cdot 23^{2} + 16\cdot 23^{3} + 16\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.