Basic invariants
Dimension: | $2$ |
Group: | $C_6\times S_3$ |
Conductor: | \(1368\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 19 \) |
Artin stem field: | Galois closure of 12.0.24904730935296.2 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6\times S_3$ |
Parity: | odd |
Determinant: | 1.152.6t1.c.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.2888.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{12} - 2x^{11} + 3x^{10} - 6x^{9} + 5x^{8} - 2x^{7} + 2x^{6} + 2x^{5} + 5x^{4} - 12x^{3} + 16x^{2} - 12x + 9 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{6} + 10x^{3} + 11x^{2} + 11x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 12 a^{5} + 5 a^{4} + 8 a^{3} + 2 a^{2} + 6 a + 6 + \left(11 a^{4} + 8 a^{2} + 7 a + 3\right)\cdot 13 + \left(2 a^{5} + 12 a^{4} + 3 a^{3} + 3 a^{2} + 9 a + 5\right)\cdot 13^{2} + \left(8 a^{5} + 7 a^{4} + 3 a^{3} + 6 a^{2} + 10 a + 5\right)\cdot 13^{3} + \left(4 a^{5} + 7 a^{4} + 9 a^{3} + 2 a^{2} + 5 a + 8\right)\cdot 13^{4} + \left(6 a^{5} + 5 a^{4} + 8 a^{3} + 11 a^{2} + 11 a\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 2 }$ | $=$ | \( 8 a^{5} + a^{4} + 9 a^{3} + 7 a^{2} + 2 a + 10 + \left(4 a^{5} + 8 a^{4} + 8 a^{3} + 4 a^{2} + a + 5\right)\cdot 13 + \left(7 a^{5} + 11 a^{4} + 5 a^{3} + 4 a^{2} + 10 a + 3\right)\cdot 13^{2} + \left(2 a^{5} + a^{4} + 7 a^{3} + 5 a^{2} + 12 a + 6\right)\cdot 13^{3} + \left(2 a^{5} + 11 a^{4} + 6 a^{3} + 11 a^{2} + 11 a + 9\right)\cdot 13^{4} + \left(4 a^{5} + a^{4} + 2 a^{2} + 12 a + 9\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 3 }$ | $=$ | \( 6 a^{5} + 7 a^{4} + 9 a^{3} + 4 a^{2} + 5 a + 1 + \left(7 a^{5} + 6 a^{4} + 3 a^{3} + 4 a + 2\right)\cdot 13 + \left(3 a^{5} + a^{4} + 4 a^{3} + 5 a^{2} + 6 a + 11\right)\cdot 13^{2} + \left(2 a^{5} + 3 a^{4} + 2 a^{3} + a^{2} + 2 a + 10\right)\cdot 13^{3} + \left(6 a^{5} + 7 a^{4} + 10 a^{3} + 12 a^{2} + 8 a + 2\right)\cdot 13^{4} + \left(2 a^{5} + 5 a^{4} + 3 a^{3} + 11 a^{2} + a + 5\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 4 }$ | $=$ | \( 2 a^{5} + a^{4} + 2 a^{3} + a^{2} + 8 a + \left(8 a^{5} + 11 a^{3} + 6 a^{2} + a + 6\right)\cdot 13 + \left(12 a^{5} + 6 a^{4} + 7 a^{3} + 12 a^{2} + 9 a + 10\right)\cdot 13^{2} + \left(9 a^{5} + a^{4} + 4 a^{3} + 8 a + 2\right)\cdot 13^{3} + \left(8 a^{5} + 5 a^{4} + 4 a^{2} + 3 a + 2\right)\cdot 13^{4} + \left(5 a^{5} + 7 a^{4} + 10 a^{3} + 6 a^{2} + 8 a + 8\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 5 }$ | $=$ | \( 8 a^{5} + 2 a^{4} + 4 a^{2} + 7 a + 9 + \left(12 a^{4} + 2 a^{2} + 9 a + 8\right)\cdot 13 + \left(10 a^{5} + 5 a^{4} + 12 a^{3} + 10 a^{2} + 11 a + 2\right)\cdot 13^{2} + \left(11 a^{5} + 5 a^{4} + 3 a^{3} + 12 a^{2} + 3 a + 6\right)\cdot 13^{3} + \left(6 a^{5} + 12 a^{4} + 7 a^{3} + 8 a^{2} + 11 a + 8\right)\cdot 13^{4} + \left(8 a^{5} + 5 a^{4} + 6 a^{3} + a^{2} + 4 a + 8\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 6 }$ | $=$ | \( 3 a^{5} + 10 a^{4} + 11 a^{3} + 8 a^{2} + 11 a + 1 + \left(4 a^{5} + a^{3} + 4 a^{2} + a\right)\cdot 13 + \left(3 a^{5} + a^{4} + 6 a^{3} + 3 a^{2} + 5 a + 6\right)\cdot 13^{2} + \left(4 a^{5} + 6 a^{4} + 4 a^{3} + 12 a^{2} + 7\right)\cdot 13^{3} + \left(10 a^{5} + 8 a^{4} + 5 a^{3} + 12 a^{2} + 11 a + 7\right)\cdot 13^{4} + \left(11 a^{5} + 12 a^{4} + 9 a^{3} + 4 a^{2} + 12 a + 6\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 7 }$ | $=$ | \( 6 a^{5} + 3 a^{4} + 6 a^{3} + 3 a^{2} + 11 a + \left(7 a^{5} + 11 a^{4} + 3 a^{3} + 3 a^{2} + a + 5\right)\cdot 13 + \left(9 a^{5} + 11 a^{4} + 2 a^{3} + 6 a^{2} + 2 a + 6\right)\cdot 13^{2} + \left(a^{5} + a^{4} + 3 a^{3} + 3 a^{2} + 3\right)\cdot 13^{3} + \left(10 a^{4} + 5 a^{3} + 3 a^{2} + 11 a + 11\right)\cdot 13^{4} + \left(10 a^{5} + 6 a^{3} + 5 a^{2} + 5 a + 6\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 8 }$ | $=$ | \( 11 a^{5} + 6 a^{4} + 12 a^{2} + 8 a + 1 + \left(11 a^{5} + 6 a^{4} + 11 a^{2} + a + 8\right)\cdot 13 + \left(6 a^{5} + 7 a^{4} + 10 a^{3} + a^{2} + 1\right)\cdot 13^{2} + \left(3 a^{4} + 5 a^{2} + a + 12\right)\cdot 13^{3} + \left(12 a^{5} + 9 a^{4} + 7 a^{3} + 4 a^{2} + 9 a + 3\right)\cdot 13^{4} + \left(9 a^{5} + 4 a^{4} + 10 a^{3} + 10 a^{2} + 10 a + 12\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 9 }$ | $=$ | \( 9 a^{5} + 4 a^{4} + 7 a^{3} + 11 a^{2} + 7 a + 3 + \left(6 a^{5} + 8 a^{4} + 9 a^{3} + 10 a^{2} + 9 a + 11\right)\cdot 13 + \left(9 a^{5} + 6 a^{4} + 4 a^{2} + 10 a + 11\right)\cdot 13^{2} + \left(10 a^{5} + 7 a^{4} + 9 a^{3} + 4 a^{2} + 11 a + 6\right)\cdot 13^{3} + \left(6 a^{4} + 5 a^{2} + 5 a + 5\right)\cdot 13^{4} + \left(6 a^{5} + 7 a^{4} + 9 a^{3} + 10 a^{2} + 9 a + 9\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 10 }$ | $=$ | \( 4 a^{5} + 6 a^{4} + 7 a^{3} + 5 a^{2} + 2 a + 2 + \left(7 a^{5} + 3 a^{4} + 10 a^{2} + 8 a + 11\right)\cdot 13 + \left(a^{4} + 11 a^{3} + 12 a + 8\right)\cdot 13^{2} + \left(12 a^{4} + 7 a^{3} + 11 a^{2} + 12 a + 1\right)\cdot 13^{3} + \left(8 a^{5} + 4 a^{4} + 3 a^{3} + 6 a^{2} + 3 a + 10\right)\cdot 13^{4} + \left(7 a^{5} + 4 a^{4} + 4 a^{3} + 4 a^{2} + 9\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 11 }$ | $=$ | \( 7 a^{5} + 9 a^{4} + 3 a^{3} + 11 a^{2} + 5 a + 12 + \left(10 a^{5} + 8 a^{4} + 9 a^{3} + 8 a^{2} + 12 a + 9\right)\cdot 13 + \left(a^{5} + a^{4} + 9 a^{3} + 7 a^{2} + 12 a + 5\right)\cdot 13^{2} + \left(4 a^{5} + 2 a^{4} + 8 a^{3} + 9 a^{2} + 7 a + 7\right)\cdot 13^{3} + \left(3 a^{5} + 6 a^{4} + 2 a^{3} + 12 a + 10\right)\cdot 13^{4} + \left(11 a^{5} + 7 a^{4} + 11 a^{3} + 6 a^{2}\right)\cdot 13^{5} +O(13^{6})\) |
$r_{ 12 }$ | $=$ | \( 2 a^{5} + 11 a^{4} + 3 a^{3} + 10 a^{2} + 6 a + 9 + \left(8 a^{5} + 3 a^{3} + 6 a^{2} + 5 a + 6\right)\cdot 13 + \left(10 a^{5} + 10 a^{4} + 5 a^{3} + 4 a^{2} + 4\right)\cdot 13^{2} + \left(8 a^{5} + 11 a^{4} + 9 a^{3} + 5 a^{2} + 5 a + 7\right)\cdot 13^{3} + \left(a^{5} + a^{4} + 6 a^{3} + 5 a^{2} + 9 a + 10\right)\cdot 13^{4} + \left(7 a^{5} + a^{4} + 10 a^{3} + 2 a^{2} + 11 a + 12\right)\cdot 13^{5} +O(13^{6})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,10)(2,11)(3,12)(4,7)(5,8)(6,9)$ | $-2$ |
$3$ | $2$ | $(1,5)(2,6)(3,4)(7,12)(8,10)(9,11)$ | $0$ |
$3$ | $2$ | $(1,8)(2,9)(3,7)(4,12)(5,10)(6,11)$ | $0$ |
$1$ | $3$ | $(1,2,3)(4,5,6)(7,8,9)(10,11,12)$ | $-2 \zeta_{3} - 2$ |
$1$ | $3$ | $(1,3,2)(4,6,5)(7,9,8)(10,12,11)$ | $2 \zeta_{3}$ |
$2$ | $3$ | $(4,6,5)(7,9,8)$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(4,5,6)(7,8,9)$ | $-\zeta_{3}$ |
$2$ | $3$ | $(1,2,3)(4,6,5)(7,9,8)(10,11,12)$ | $-1$ |
$1$ | $6$ | $(1,11,3,10,2,12)(4,8,6,7,5,9)$ | $2 \zeta_{3} + 2$ |
$1$ | $6$ | $(1,12,2,10,3,11)(4,9,5,7,6,8)$ | $-2 \zeta_{3}$ |
$2$ | $6$ | $(1,10)(2,11)(3,12)(4,9,5,7,6,8)$ | $-\zeta_{3} - 1$ |
$2$ | $6$ | $(1,10)(2,11)(3,12)(4,8,6,7,5,9)$ | $\zeta_{3}$ |
$2$ | $6$ | $(1,12,2,10,3,11)(4,8,6,7,5,9)$ | $1$ |
$3$ | $6$ | $(1,4,2,5,3,6)(7,11,8,12,9,10)$ | $0$ |
$3$ | $6$ | $(1,6,3,5,2,4)(7,10,9,12,8,11)$ | $0$ |
$3$ | $6$ | $(1,7,2,8,3,9)(4,11,5,12,6,10)$ | $0$ |
$3$ | $6$ | $(1,9,3,8,2,7)(4,10,6,12,5,11)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.