Properties

Label 2.135.3t2.b.a
Dimension $2$
Group $S_3$
Conductor $135$
Root number $1$
Indicator $1$

Related objects

Learn more about

Basic invariants

Dimension: $2$
Group: $S_3$
Conductor: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 3.1.135.1
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: odd
Determinant: 1.15.2t1.a.a
Projective image: $S_3$
Projective stem field: 3.1.135.1

Defining polynomial

$f(x)$$=$\(x^{3} + 3 x - 1\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 11 + 17\cdot 47 + 27\cdot 47^{2} + 42\cdot 47^{3} + 3\cdot 47^{4} +O(47^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 41 + 38\cdot 47 + 43\cdot 47^{2} + 21\cdot 47^{3} + 15\cdot 47^{4} +O(47^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 42 + 37\cdot 47 + 22\cdot 47^{2} + 29\cdot 47^{3} + 27\cdot 47^{4} +O(47^{5})\)  Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$

The blue line marks the conjugacy class containing complex conjugation.