Properties

Label 2.1319.9t3.1c2
Dimension 2
Group $D_{9}$
Conductor $ 1319 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1319 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 6 x^{7} - 9 x^{6} + 10 x^{5} - 11 x^{4} + 41 x^{3} - 6 x^{2} + 26 x + 17 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.1319.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{3} + 6 x + 65 $
Roots:
$r_{ 1 }$ $=$ $ 33 a^{2} + 38 + \left(2 a^{2} + 22 a + 36\right)\cdot 67 + \left(27 a^{2} + a + 63\right)\cdot 67^{2} + \left(54 a^{2} + 6 a + 59\right)\cdot 67^{3} + \left(6 a + 36\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 a^{2} + 28 a + 37 + \left(a^{2} + 59 a + 1\right)\cdot 67 + \left(64 a^{2} + 21 a + 13\right)\cdot 67^{2} + \left(31 a^{2} + 5 a + 46\right)\cdot 67^{3} + \left(48 a^{2} + 28 a + 7\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 56 a + 15 + \left(27 a^{2} + 51 a + 36\right)\cdot 67 + \left(15 a^{2} + 17 a + 19\right)\cdot 67^{2} + \left(57 a^{2} + 27 a + 13\right)\cdot 67^{3} + \left(23 a^{2} + 32 a + 43\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 61 a^{2} + 25 a + 16 + \left(a^{2} + 26 a + 34\right)\cdot 67 + \left(28 a^{2} + 63 a\right)\cdot 67^{2} + \left(40 a^{2} + 26 a + 4\right)\cdot 67^{3} + \left(39 a^{2} + 15 a + 58\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 a^{2} + 42 a + 66 + \left(62 a^{2} + 18 a + 8\right)\cdot 67 + \left(11 a^{2} + 2 a + 3\right)\cdot 67^{2} + \left(39 a^{2} + 34 a + 66\right)\cdot 67^{3} + \left(26 a^{2} + 45 a + 5\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a^{2} + 50 a + 19 + \left(38 a^{2} + 22 a + 13\right)\cdot 67 + \left(54 a^{2} + 27 a + 42\right)\cdot 67^{2} + \left(44 a^{2} + 34 a + 30\right)\cdot 67^{3} + \left(61 a^{2} + 6 a + 60\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 3 a^{2} + 50 a + 39 + \left(20 a^{2} + 64 a + 36\right)\cdot 67 + \left(35 a^{2} + 66 a + 4\right)\cdot 67^{2} + \left(8 a^{2} + 38 a + 50\right)\cdot 67^{3} + \left(39 a^{2} + 37 a + 18\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 5 a^{2} + 13 a + 47 + \left(9 a^{2} + 39 a + 59\right)\cdot 67 + \left(45 a^{2} + 11 a + 43\right)\cdot 67^{2} + \left(64 a^{2} + 37 a + 6\right)\cdot 67^{3} + \left(43 a^{2} + 64 a + 38\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 59 a^{2} + 4 a + 62 + \left(37 a^{2} + 30 a + 40\right)\cdot 67 + \left(53 a^{2} + 55 a + 10\right)\cdot 67^{2} + \left(60 a^{2} + 57 a + 58\right)\cdot 67^{3} + \left(50 a^{2} + 31 a + 65\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7,3,4,9,2,5,8,6)$
$(1,4,5)(2,6,3)(7,9,8)$
$(1,6)(2,4)(3,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,6)(2,4)(3,5)(7,8)$$0$
$2$$3$$(1,4,5)(2,6,3)(7,9,8)$$-1$
$2$$9$$(1,7,3,4,9,2,5,8,6)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,3,9,5,6,7,4,2,8)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,9,6,4,8,3,5,7,2)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.