Properties

Label 2.1299.4t3.b.a
Dimension $2$
Group $D_{4}$
Conductor $1299$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1299\)\(\medspace = 3 \cdot 433 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.562467.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.1299.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{433})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{2} - 108 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 8 + 68\cdot 109 + 79\cdot 109^{2} + 89\cdot 109^{3} + 64\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 41 + 53\cdot 109 + 109^{2} + 66\cdot 109^{3} + 50\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 68 + 55\cdot 109 + 107\cdot 109^{2} + 42\cdot 109^{3} + 58\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 101 + 40\cdot 109 + 29\cdot 109^{2} + 19\cdot 109^{3} + 44\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.