Properties

Label 2.1291.9t3.1
Dimension 2
Group $D_{9}$
Conductor $ 1291 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1291 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 5 x^{7} - 13 x^{6} + 38 x^{5} - 55 x^{4} + 32 x^{3} - 28 x^{2} + 64 x - 48 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 18 a^{2} + 30 a + 38 + \left(41 a^{2} + 37 a + 23\right)\cdot 47 + \left(45 a^{2} + 34 a + 44\right)\cdot 47^{2} + \left(38 a^{2} + 34 a + 24\right)\cdot 47^{3} + \left(11 a^{2} + 9 a + 28\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{2} + 4 a + 20 + \left(46 a^{2} + 21 a + 35\right)\cdot 47 + \left(12 a^{2} + 33 a + 42\right)\cdot 47^{2} + \left(15 a^{2} + 24 a + 6\right)\cdot 47^{3} + \left(35 a^{2} + 25 a + 25\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 a^{2} + 44 a + 24 + \left(16 a^{2} + 36 a + 39\right)\cdot 47 + \left(40 a^{2} + 8 a + 32\right)\cdot 47^{2} + \left(16 a^{2} + 31 a\right)\cdot 47^{3} + \left(20 a^{2} + 17 a + 3\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a^{2} + 46 a + 28 + \left(24 a^{2} + 42 a + 36\right)\cdot 47 + \left(39 a^{2} + 28 a + 31\right)\cdot 47^{2} + \left(21 a^{2} + 37 a + 37\right)\cdot 47^{3} + \left(46 a^{2} + 37 a + 3\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 a^{2} + a + 44 + \left(46 a^{2} + 3 a + 35\right)\cdot 47 + \left(14 a^{2} + 9 a + 46\right)\cdot 47^{2} + \left(21 a^{2} + 7 a + 18\right)\cdot 47^{3} + \left(7 a^{2} + 31 a + 16\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 a^{2} + 42 a + 1 + \left(a^{2} + 22 a + 40\right)\cdot 47 + \left(19 a^{2} + 4 a + 7\right)\cdot 47^{2} + \left(10 a^{2} + 15 a + 44\right)\cdot 47^{3} + \left(4 a^{2} + 37 a + 9\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 16 a^{2} + 18 a + 34 + \left(28 a^{2} + 13 a + 44\right)\cdot 47 + \left(8 a^{2} + 30 a + 16\right)\cdot 47^{2} + \left(33 a^{2} + 21 a + 13\right)\cdot 47^{3} + \left(35 a^{2} + 46 a + 29\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 7 a^{2} + 25 a + 23 + \left(6 a^{2} + 32 a + 18\right)\cdot 47 + \left(46 a^{2} + 35 a + 44\right)\cdot 47^{2} + \left(20 a^{2} + 14 a + 8\right)\cdot 47^{3} + \left(12 a^{2} + 42 a + 34\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 9 a^{2} + 25 a + 27 + \left(24 a^{2} + 24 a + 7\right)\cdot 47 + \left(7 a^{2} + 2 a + 14\right)\cdot 47^{2} + \left(9 a^{2} + a + 32\right)\cdot 47^{3} + \left(14 a^{2} + 34 a + 37\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7,4)(2,5,6)(3,9,8)$
$(1,8)(2,5)(3,4)(7,9)$
$(1,2,9,7,5,8,4,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$9$ $2$ $(1,8)(2,5)(3,4)(7,9)$ $0$ $0$ $0$
$2$ $3$ $(1,7,4)(2,5,6)(3,9,8)$ $-1$ $-1$ $-1$
$2$ $9$ $(1,2,9,7,5,8,4,6,3)$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$ $9$ $(1,9,5,4,3,2,7,8,6)$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$ $9$ $(1,5,3,7,6,9,4,2,8)$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.