Properties

Label 2.1280.8t6.c
Dimension $2$
Group $D_{8}$
Conductor $1280$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:\(1280\)\(\medspace = 2^{8} \cdot 5 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.0.2097152000.4
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Projective image: $D_4$
Projective field: Galois closure of 4.0.1280.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ \( 3 + 10\cdot 61 + 31\cdot 61^{2} + 16\cdot 61^{3} + 48\cdot 61^{4} + 57\cdot 61^{5} + 38\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 + 5\cdot 61 + 30\cdot 61^{2} + 30\cdot 61^{3} + 32\cdot 61^{4} + 46\cdot 61^{5} + 9\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 + 6\cdot 61 + 45\cdot 61^{2} + 54\cdot 61^{3} + 18\cdot 61^{4} + 7\cdot 61^{5} +O(61^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 25 + 21\cdot 61 + 37\cdot 61^{2} + 8\cdot 61^{4} + 48\cdot 61^{5} + 5\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 36 + 39\cdot 61 + 23\cdot 61^{2} + 60\cdot 61^{3} + 52\cdot 61^{4} + 12\cdot 61^{5} + 55\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 43 + 54\cdot 61 + 15\cdot 61^{2} + 6\cdot 61^{3} + 42\cdot 61^{4} + 53\cdot 61^{5} + 60\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 49 + 55\cdot 61 + 30\cdot 61^{2} + 30\cdot 61^{3} + 28\cdot 61^{4} + 14\cdot 61^{5} + 51\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 58 + 50\cdot 61 + 29\cdot 61^{2} + 44\cdot 61^{3} + 12\cdot 61^{4} + 3\cdot 61^{5} + 22\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,2,8,3,5,7)$
$(1,5)(3,6)(4,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,5)(3,6)(4,8)$ $0$ $0$
$4$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$ $0$
$2$ $8$ $(1,6,4,2,8,3,5,7)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,2,5,6,8,7,4,3)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.