Basic invariants
| Dimension: | $2$ |
| Group: | $D_{8}$ |
| Conductor: | \(1280\)\(\medspace = 2^{8} \cdot 5 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 8.2.2621440000.2 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $D_{8}$ |
| Parity: | odd |
| Determinant: | 1.20.2t1.a.a |
| Projective image: | $D_4$ |
| Projective stem field: | Galois closure of 4.0.1280.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{8} + 2x^{4} - 4 \)
|
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 7.
Roots:
| $r_{ 1 }$ | $=$ |
\( 9 + 30\cdot 61 + 59\cdot 61^{2} + 15\cdot 61^{3} + 57\cdot 61^{4} + 19\cdot 61^{5} + 57\cdot 61^{6} +O(61^{7})\)
|
| $r_{ 2 }$ | $=$ |
\( 19 + 30\cdot 61 + 33\cdot 61^{2} + 20\cdot 61^{4} + 13\cdot 61^{5} + 55\cdot 61^{6} +O(61^{7})\)
|
| $r_{ 3 }$ | $=$ |
\( 23 + 57\cdot 61 + 54\cdot 61^{2} + 10\cdot 61^{3} + 8\cdot 61^{4} + 53\cdot 61^{5} + 53\cdot 61^{6} +O(61^{7})\)
|
| $r_{ 4 }$ | $=$ |
\( 26 + 54\cdot 61 + 8\cdot 61^{2} + 55\cdot 61^{3} + 2\cdot 61^{4} + 40\cdot 61^{5} + 54\cdot 61^{6} +O(61^{7})\)
|
| $r_{ 5 }$ | $=$ |
\( 35 + 6\cdot 61 + 52\cdot 61^{2} + 5\cdot 61^{3} + 58\cdot 61^{4} + 20\cdot 61^{5} + 6\cdot 61^{6} +O(61^{7})\)
|
| $r_{ 6 }$ | $=$ |
\( 38 + 3\cdot 61 + 6\cdot 61^{2} + 50\cdot 61^{3} + 52\cdot 61^{4} + 7\cdot 61^{5} + 7\cdot 61^{6} +O(61^{7})\)
|
| $r_{ 7 }$ | $=$ |
\( 42 + 30\cdot 61 + 27\cdot 61^{2} + 60\cdot 61^{3} + 40\cdot 61^{4} + 47\cdot 61^{5} + 5\cdot 61^{6} +O(61^{7})\)
|
| $r_{ 8 }$ | $=$ |
\( 52 + 30\cdot 61 + 61^{2} + 45\cdot 61^{3} + 3\cdot 61^{4} + 41\cdot 61^{5} + 3\cdot 61^{6} +O(61^{7})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ | |
| $4$ | $2$ | $(1,8)(2,4)(5,7)$ | $0$ | ✓ |
| $4$ | $2$ | $(1,2)(3,5)(4,6)(7,8)$ | $0$ | |
| $2$ | $4$ | $(1,3,8,6)(2,4,7,5)$ | $0$ | |
| $2$ | $8$ | $(1,7,3,5,8,2,6,4)$ | $\zeta_{8}^{3} - \zeta_{8}$ | |
| $2$ | $8$ | $(1,5,6,7,8,4,3,2)$ | $-\zeta_{8}^{3} + \zeta_{8}$ |