Properties

Label 2.1280.8t6.b.b
Dimension $2$
Group $D_{8}$
Conductor $1280$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{8}$
Conductor: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.2.2621440000.2
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Determinant: 1.20.2t1.a.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.0.1280.1

Defining polynomial

$f(x)$$=$ \( x^{8} + 2x^{4} - 4 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 7.

Roots:
$r_{ 1 }$ $=$ \( 9 + 30\cdot 61 + 59\cdot 61^{2} + 15\cdot 61^{3} + 57\cdot 61^{4} + 19\cdot 61^{5} + 57\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 19 + 30\cdot 61 + 33\cdot 61^{2} + 20\cdot 61^{4} + 13\cdot 61^{5} + 55\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 23 + 57\cdot 61 + 54\cdot 61^{2} + 10\cdot 61^{3} + 8\cdot 61^{4} + 53\cdot 61^{5} + 53\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 26 + 54\cdot 61 + 8\cdot 61^{2} + 55\cdot 61^{3} + 2\cdot 61^{4} + 40\cdot 61^{5} + 54\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 35 + 6\cdot 61 + 52\cdot 61^{2} + 5\cdot 61^{3} + 58\cdot 61^{4} + 20\cdot 61^{5} + 6\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 38 + 3\cdot 61 + 6\cdot 61^{2} + 50\cdot 61^{3} + 52\cdot 61^{4} + 7\cdot 61^{5} + 7\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 42 + 30\cdot 61 + 27\cdot 61^{2} + 60\cdot 61^{3} + 40\cdot 61^{4} + 47\cdot 61^{5} + 5\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 52 + 30\cdot 61 + 61^{2} + 45\cdot 61^{3} + 3\cdot 61^{4} + 41\cdot 61^{5} + 3\cdot 61^{6} +O(61^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,3,5,8,2,6,4)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,8)(2,4)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,8)(2,4)(5,7)$$0$
$4$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$8$$(1,7,3,5,8,2,6,4)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,5,6,7,8,4,3,2)$$-\zeta_{8}^{3} + \zeta_{8}$