Properties

Label 2.127449.8t5.b.a
Dimension $2$
Group $Q_8$
Conductor $127449$
Root number $1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(127449\)\(\medspace = 3^{2} \cdot 7^{2} \cdot 17^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $1$
Artin field: Galois closure of 8.0.2070185663499849.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{17}, \sqrt{21})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - x^{7} + 65x^{6} - 439x^{5} + 1876x^{4} - 12191x^{3} + 60887x^{2} - 124718x + 121291 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 17 + 59\cdot 89 + 69\cdot 89^{2} + 71\cdot 89^{3} + 27\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 19 + 75\cdot 89 + 57\cdot 89^{2} + 78\cdot 89^{3} + 11\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 24 + 65\cdot 89 + 57\cdot 89^{2} + 13\cdot 89^{3} + 44\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 29 + 66\cdot 89 + 82\cdot 89^{2} + 11\cdot 89^{3} + 10\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 33 + 24\cdot 89 + 11\cdot 89^{2} + 31\cdot 89^{3} + 12\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 67 + 82\cdot 89 + 53\cdot 89^{2} + 29\cdot 89^{3} + 20\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 82 + 66\cdot 89 + 31\cdot 89^{2} + 46\cdot 89^{3} + 19\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 86 + 4\cdot 89 + 80\cdot 89^{2} + 72\cdot 89^{3} + 31\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(1,3,4,2)(5,7,8,6)$
$(1,6,4,7)(2,5,3,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$2$$4$$(1,3,4,2)(5,7,8,6)$$0$
$2$$4$$(1,6,4,7)(2,5,3,8)$$0$
$2$$4$$(1,8,4,5)(2,6,3,7)$$0$