Properties

Label 2.127449.8t5.a.a
Dimension $2$
Group $Q_8$
Conductor $127449$
Root number $-1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(127449\)\(\medspace = 3^{2} \cdot 7^{2} \cdot 17^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $-1$
Artin field: Galois closure of 8.8.2070185663499849.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{17}, \sqrt{21})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 3x^{7} - 110x^{6} + 153x^{5} + 3789x^{4} + 1989x^{3} - 44000x^{2} - 97899x - 46703 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 1 + 44\cdot 47 + 27\cdot 47^{2} + 36\cdot 47^{3} + 21\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 6\cdot 47^{3} + 36\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 + 25\cdot 47 + 25\cdot 47^{2} + 14\cdot 47^{3} + 44\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 22 + 2\cdot 47 + 30\cdot 47^{2} + 27\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 27 + 43\cdot 47 + 34\cdot 47^{2} + 11\cdot 47^{3} + 30\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 35 + 3\cdot 47 + 38\cdot 47^{2} + 10\cdot 47^{3} + 16\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 39 + 42\cdot 47 + 25\cdot 47^{2} + 7\cdot 47^{3} + 8\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 44 + 25\cdot 47 + 5\cdot 47^{2} + 6\cdot 47^{3} + 4\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,8,5)(2,4,3,6)$
$(1,3,8,2)(4,5,6,7)$
$(1,8)(2,3)(4,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,3)(4,6)(5,7)$$-2$
$2$$4$$(1,3,8,2)(4,5,6,7)$$0$
$2$$4$$(1,7,8,5)(2,4,3,6)$$0$
$2$$4$$(1,6,8,4)(2,7,3,5)$$0$