Basic invariants
Dimension: | $2$ |
Group: | $Q_8$ |
Conductor: | \(127449\)\(\medspace = 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
Frobenius-Schur indicator: | $-1$ |
Root number: | $-1$ |
Artin field: | Galois closure of 8.8.2070185663499849.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $Q_8$ |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{17}, \sqrt{21})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - 3x^{7} - 110x^{6} + 153x^{5} + 3789x^{4} + 1989x^{3} - 44000x^{2} - 97899x - 46703 \) . |
The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 1 + 44\cdot 47 + 27\cdot 47^{2} + 36\cdot 47^{3} + 21\cdot 47^{4} +O(47^{5})\) |
$r_{ 2 }$ | $=$ | \( 5 + 6\cdot 47^{3} + 36\cdot 47^{4} +O(47^{5})\) |
$r_{ 3 }$ | $=$ | \( 18 + 25\cdot 47 + 25\cdot 47^{2} + 14\cdot 47^{3} + 44\cdot 47^{4} +O(47^{5})\) |
$r_{ 4 }$ | $=$ | \( 22 + 2\cdot 47 + 30\cdot 47^{2} + 27\cdot 47^{4} +O(47^{5})\) |
$r_{ 5 }$ | $=$ | \( 27 + 43\cdot 47 + 34\cdot 47^{2} + 11\cdot 47^{3} + 30\cdot 47^{4} +O(47^{5})\) |
$r_{ 6 }$ | $=$ | \( 35 + 3\cdot 47 + 38\cdot 47^{2} + 10\cdot 47^{3} + 16\cdot 47^{4} +O(47^{5})\) |
$r_{ 7 }$ | $=$ | \( 39 + 42\cdot 47 + 25\cdot 47^{2} + 7\cdot 47^{3} + 8\cdot 47^{4} +O(47^{5})\) |
$r_{ 8 }$ | $=$ | \( 44 + 25\cdot 47 + 5\cdot 47^{2} + 6\cdot 47^{3} + 4\cdot 47^{4} +O(47^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | ✓ |
$1$ | $2$ | $(1,8)(2,3)(4,6)(5,7)$ | $-2$ | |
$2$ | $4$ | $(1,3,8,2)(4,5,6,7)$ | $0$ | |
$2$ | $4$ | $(1,7,8,5)(2,4,3,6)$ | $0$ | |
$2$ | $4$ | $(1,6,8,4)(2,7,3,5)$ | $0$ |