Properties

Label 2.12675.3t2.a.a
Dimension $2$
Group $S_3$
Conductor $12675$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3$
Conductor: \(12675\)\(\medspace = 3 \cdot 5^{2} \cdot 13^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 3.1.12675.1
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: odd
Determinant: 1.3.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.12675.1

Defining polynomial

$f(x)$$=$ \( x^{3} - x^{2} + 22x + 12 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 12 + 15\cdot 31 + 14\cdot 31^{2} + 29\cdot 31^{3} + 5\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 25 + 10\cdot 31 + 13\cdot 31^{2} + 22\cdot 31^{3} + 19\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 26 + 4\cdot 31 + 3\cdot 31^{2} + 10\cdot 31^{3} + 5\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$

The blue line marks the conjugacy class containing complex conjugation.