Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(12513\)\(\medspace = 3 \cdot 43 \cdot 97 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.4.1213761.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | even |
Determinant: | 1.12513.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{97}, \sqrt{129})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - 2x^{3} - 19x^{2} + 20x + 3 \) . |
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 4 + 30\cdot 31 + 6\cdot 31^{2} + 9\cdot 31^{3} +O(31^{5})\) |
$r_{ 2 }$ | $=$ | \( 12 + 19\cdot 31 + 26\cdot 31^{2} + 2\cdot 31^{3} + 21\cdot 31^{4} +O(31^{5})\) |
$r_{ 3 }$ | $=$ | \( 20 + 11\cdot 31 + 4\cdot 31^{2} + 28\cdot 31^{3} + 9\cdot 31^{4} +O(31^{5})\) |
$r_{ 4 }$ | $=$ | \( 28 + 24\cdot 31^{2} + 21\cdot 31^{3} + 30\cdot 31^{4} +O(31^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,4)$ | $0$ |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.