Properties

Label 2.1231.9t3.a.c
Dimension $2$
Group $D_{9}$
Conductor $1231$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{9}$
Conductor: \(1231\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 9.1.2296318960321.1
Galois orbit size: $3$
Smallest permutation container: $D_{9}$
Parity: odd
Determinant: 1.1231.2t1.a.a
Projective image: $D_9$
Projective stem field: Galois closure of 9.1.2296318960321.1

Defining polynomial

$f(x)$$=$ \( x^{9} - 4x^{8} + 4x^{7} + 3x^{6} + 21x^{5} - 24x^{4} + 25x^{3} + 17x^{2} + 7x - 33 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{3} + x + 35 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 11 a^{2} + 26 a + 2 + \left(14 a^{2} + 8 a + 1\right)\cdot 41 + \left(18 a^{2} + a + 9\right)\cdot 41^{2} + \left(3 a^{2} + 26 a + 34\right)\cdot 41^{3} + \left(31 a^{2} + a + 4\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 a^{2} + 5 a + 24 + \left(7 a^{2} + 31 a + 29\right)\cdot 41 + \left(21 a^{2} + 14 a + 3\right)\cdot 41^{2} + \left(13 a^{2} + 10 a + 10\right)\cdot 41^{3} + \left(36 a^{2} + 12 a + 20\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 a^{2} + 21 a + \left(38 a^{2} + 23\right)\cdot 41 + \left(10 a^{2} + 37 a + 10\right)\cdot 41^{2} + \left(25 a^{2} + 36 a + 4\right)\cdot 41^{3} + \left(26 a^{2} + 38 a\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 31 a^{2} + 26 a + 36 + \left(35 a^{2} + 11 a + 34\right)\cdot 41 + \left(15 a^{2} + 38 a + 37\right)\cdot 41^{2} + \left(17 a^{2} + 33 a + 5\right)\cdot 41^{3} + \left(4 a^{2} + 11 a + 9\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 17 a^{2} + 14 a + 6 + \left(3 a^{2} + 37 a + 21\right)\cdot 41 + \left(23 a^{2} + 35 a + 39\right)\cdot 41^{2} + \left(18 a^{2} + 36 a + 16\right)\cdot 41^{3} + \left(33 a^{2} + 14 a + 6\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 2 a^{2} + 39 a + 3 + \left(28 a^{2} + 8 a + 16\right)\cdot 41 + \left(32 a^{2} + 23 a + 35\right)\cdot 41^{2} + \left(11 a^{2} + 14 a + 15\right)\cdot 41^{3} + \left(39 a^{2} + 6 a + 32\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 20 a^{2} + 15 a + 32 + \left(36 a^{2} + 9 a + 21\right)\cdot 41 + \left(8 a^{2} + 30 a + 36\right)\cdot 41^{2} + \left(2 a^{2} + 34 a + 29\right)\cdot 41^{3} + \left(19 a^{2} + 30 a + 8\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 8 a^{2} + 17 a + 7 + \left(18 a^{2} + 20 a + 23\right)\cdot 41 + \left(33 a^{2} + 20 a + 8\right)\cdot 41^{2} + \left(11 a^{2} + 33 a + 2\right)\cdot 41^{3} + \left(38 a^{2} + 22 a + 18\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 13 a^{2} + a + 17 + \left(23 a^{2} + 36 a + 34\right)\cdot 41 + \left(40 a^{2} + 3 a + 23\right)\cdot 41^{2} + \left(18 a^{2} + 19 a + 3\right)\cdot 41^{3} + \left(17 a^{2} + 24 a + 23\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,2,5,8,3,9,6,7)$
$(1,6)(2,3)(4,9)(5,8)$
$(1,5,9)(2,3,7)(4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,6)(2,3)(4,9)(5,8)$$0$
$2$$3$$(1,5,9)(2,3,7)(4,8,6)$$-1$
$2$$9$$(1,4,2,5,8,3,9,6,7)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,2,8,9,7,4,5,3,6)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,8,7,5,6,2,9,4,3)$$\zeta_{9}^{5} + \zeta_{9}^{4}$

The blue line marks the conjugacy class containing complex conjugation.