Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2}\) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.0.1440000.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Determinant: | 1.3.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.300.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - 2x^{5} + 2x^{4} - 6x^{3} + 16x^{2} - 8x + 2 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$:
\( x^{2} + 16x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 3 a + \left(12 a + 15\right)\cdot 17 + \left(15 a + 7\right)\cdot 17^{2} + \left(9 a + 9\right)\cdot 17^{3} + 14\cdot 17^{4} + \left(13 a + 16\right)\cdot 17^{5} +O(17^{6})\)
$r_{ 2 }$ |
$=$ |
\( 14 a + 3 + \left(4 a + 7\right)\cdot 17 + \left(a + 11\right)\cdot 17^{2} + \left(7 a + 3\right)\cdot 17^{3} + \left(16 a + 5\right)\cdot 17^{4} + \left(3 a + 12\right)\cdot 17^{5} +O(17^{6})\)
| $r_{ 3 }$ |
$=$ |
\( 9 + 7\cdot 17 + 5\cdot 17^{2} + 16\cdot 17^{3} + 7\cdot 17^{4} + 17^{5} +O(17^{6})\)
| $r_{ 4 }$ |
$=$ |
\( 5 a + \left(13 a + 8\right)\cdot 17 + \left(a + 6\right)\cdot 17^{2} + 13 a\cdot 17^{3} + \left(12 a + 7\right)\cdot 17^{4} + \left(16 a + 14\right)\cdot 17^{5} +O(17^{6})\)
| $r_{ 5 }$ |
$=$ |
\( 12 a + 5 + \left(3 a + 16\right)\cdot 17 + \left(15 a + 11\right)\cdot 17^{2} + \left(3 a + 11\right)\cdot 17^{3} + \left(4 a + 6\right)\cdot 17^{4} + 17^{5} +O(17^{6})\)
| $r_{ 6 }$ |
$=$ |
\( 2 + 14\cdot 17 + 7\cdot 17^{2} + 9\cdot 17^{3} + 9\cdot 17^{4} + 4\cdot 17^{5} +O(17^{6})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
$3$ | $2$ | $(1,2)(4,5)$ | $0$ |
$3$ | $2$ | $(1,4)(2,3)(5,6)$ | $0$ |
$2$ | $3$ | $(1,2,6)(3,4,5)$ | $-1$ |
$2$ | $6$ | $(1,3,2,4,6,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.