Properties

Label 2.11e2_37e2.24t7.2
Dimension 2
Group $\SL(2,3)$
Conductor $ 11^{2} \cdot 37^{2}$
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$165649= 11^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 13 x^{6} + 18 x^{5} + 5 x^{4} + 126 x^{3} + 142 x^{2} - 70 x + 47 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T7
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 4 a^{2} + 13 a + 11 + \left(10 a^{2} + 11 a + 2\right)\cdot 17 + \left(13 a^{2} + 12 a + 3\right)\cdot 17^{2} + \left(7 a^{2} + 15 a + 1\right)\cdot 17^{3} + \left(9 a^{2} + 16 a + 1\right)\cdot 17^{4} + \left(11 a^{2} + 12 a + 3\right)\cdot 17^{5} + \left(8 a^{2} + 6 a + 8\right)\cdot 17^{6} + \left(10 a^{2} + 5 a + 10\right)\cdot 17^{7} + \left(13 a^{2} + 10 a + 15\right)\cdot 17^{8} + \left(8 a + 15\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 12 a + 9 + \left(a^{2} + 5 a + 13\right)\cdot 17 + \left(13 a^{2} + 6 a + 2\right)\cdot 17^{2} + \left(12 a^{2} + 8 a + 10\right)\cdot 17^{3} + \left(13 a^{2} + 3 a + 9\right)\cdot 17^{4} + \left(3 a^{2} + 11 a + 3\right)\cdot 17^{5} + \left(4 a^{2} + 5\right)\cdot 17^{6} + \left(4 a^{2} + 8 a + 6\right)\cdot 17^{7} + \left(3 a^{2} + 4 a + 14\right)\cdot 17^{8} + \left(9 a^{2} + 2 a + 15\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 15 + 9\cdot 17^{2} + 17^{3} + 3\cdot 17^{4} + 3\cdot 17^{5} + 2\cdot 17^{6} + 5\cdot 17^{7} + 7\cdot 17^{8} + 14\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 16 + 6\cdot 17 + 6\cdot 17^{2} + 8\cdot 17^{3} + 14\cdot 17^{4} + 14\cdot 17^{5} + 7\cdot 17^{6} + 16\cdot 17^{8} + 2\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 3 a^{2} + 6 a + 1 + \left(11 a^{2} + 4 a + 9\right)\cdot 17 + \left(12 a^{2} + 3\right)\cdot 17^{2} + \left(14 a^{2} + 5 a + 16\right)\cdot 17^{3} + \left(5 a^{2} + a + 8\right)\cdot 17^{4} + \left(8 a + 4\right)\cdot 17^{5} + \left(a^{2} + 11 a + 6\right)\cdot 17^{6} + \left(a^{2} + 8 a + 12\right)\cdot 17^{7} + \left(5 a^{2} + 15 a + 11\right)\cdot 17^{8} + \left(10 a^{2} + 2 a + 2\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 12 a^{2} + 9 a + 5 + \left(5 a^{2} + 16 a + 5\right)\cdot 17 + \left(7 a^{2} + 14 a + 10\right)\cdot 17^{2} + \left(13 a^{2} + 9 a + 10\right)\cdot 17^{3} + \left(10 a^{2} + 13 a + 7\right)\cdot 17^{4} + \left(a^{2} + 9 a + 13\right)\cdot 17^{5} + \left(4 a^{2} + 9 a + 10\right)\cdot 17^{6} + \left(2 a^{2} + 3 a + 10\right)\cdot 17^{7} + \left(2 a + 6\right)\cdot 17^{8} + \left(7 a^{2} + 6 a + 14\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 11 a^{2} + 7 a + 12 + \left(14 a^{2} + 4 a + 5\right)\cdot 17 + \left(14 a^{2} + 5 a + 16\right)\cdot 17^{2} + \left(10 a^{2} + 4 a + 7\right)\cdot 17^{3} + \left(14 a^{2} + 10 a + 3\right)\cdot 17^{4} + \left(14 a^{2} + 11 a + 14\right)\cdot 17^{5} + \left(8 a^{2} + 16 a + 5\right)\cdot 17^{6} + \left(6 a^{2} + 3 a + 10\right)\cdot 17^{7} + \left(5 a^{2} + 11 a\right)\cdot 17^{8} + \left(10 a^{2} + 5 a + 14\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 3 a^{2} + 4 a + 1 + \left(8 a^{2} + 8 a + 7\right)\cdot 17 + \left(6 a^{2} + 11 a + 16\right)\cdot 17^{2} + \left(8 a^{2} + 7 a + 11\right)\cdot 17^{3} + \left(13 a^{2} + 5 a + 2\right)\cdot 17^{4} + \left(a^{2} + 14 a + 11\right)\cdot 17^{5} + \left(7 a^{2} + 5 a + 4\right)\cdot 17^{6} + \left(9 a^{2} + 4 a + 12\right)\cdot 17^{7} + \left(6 a^{2} + 7 a + 12\right)\cdot 17^{8} + \left(13 a^{2} + 8 a + 4\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,4)(2,7,8,6)$
$(1,5)(2,8)(3,4)(6,7)$
$(1,8,3)(2,4,5)$
$(1,7,5,6)(2,4,8,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,8)(3,4)(6,7)$ $-2$
$4$ $3$ $(1,8,3)(2,4,5)$ $-1$
$4$ $3$ $(1,3,8)(2,5,4)$ $-1$
$6$ $4$ $(1,7,5,6)(2,4,8,3)$ $0$
$4$ $6$ $(1,3,7,5,4,6)(2,8)$ $1$
$4$ $6$ $(1,6,4,5,7,3)(2,8)$ $1$
The blue line marks the conjugacy class containing complex conjugation.