Properties

Label 2.11e2_31.9t3.1c2
Dimension 2
Group $D_{9}$
Conductor $ 11^{2} \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$3751= 11^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} - 10 x^{7} + 29 x^{6} + 19 x^{5} - 98 x^{4} - 115 x^{3} + 611 x^{2} - 705 x + 279 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 39 a^{2} + 39 a + 33 + \left(38 a^{2} + 7 a + 13\right)\cdot 47 + \left(18 a^{2} + 30 a + 5\right)\cdot 47^{2} + \left(17 a^{2} + 24 a + 23\right)\cdot 47^{3} + \left(34 a^{2} + 29 a + 44\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 a^{2} + 12 a + 21 + \left(18 a^{2} + 46 a + 1\right)\cdot 47 + \left(29 a^{2} + 29 a + 22\right)\cdot 47^{2} + \left(24 a^{2} + 38 a + 31\right)\cdot 47^{3} + \left(33 a^{2} + 9 a + 11\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 a^{2} + 26 a + 25 + \left(33 a^{2} + 2 a + 41\right)\cdot 47 + \left(13 a^{2} + 18 a + 33\right)\cdot 47^{2} + \left(23 a^{2} + 26 a + 44\right)\cdot 47^{3} + \left(39 a^{2} + 15 a + 1\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 a^{2} + a + 15 + \left(41 a^{2} + 4 a\right)\cdot 47 + \left(27 a^{2} + 2 a + 19\right)\cdot 47^{2} + \left(15 a^{2} + 32 a + 13\right)\cdot 47^{3} + \left(11 a^{2} + 24 a + 14\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 43 a^{2} + 26 a + 34 + \left(11 a^{2} + 4 a + 45\right)\cdot 47 + \left(9 a^{2} + 45 a + 24\right)\cdot 47^{2} + \left(a^{2} + 45 a\right)\cdot 47^{3} + \left(2 a + 17\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 a^{2} + 20 a + 3 + \left(20 a^{2} + 46 a + 24\right)\cdot 47 + \left(41 a^{2} + 20 a + 3\right)\cdot 47^{2} + \left(19 a + 37\right)\cdot 47^{3} + \left(28 a^{2} + 9 a + 31\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 36 a^{2} + 42 a + 20 + \left(a^{2} + 39 a + 25\right)\cdot 47 + \left(24 a^{2} + 30 a + 7\right)\cdot 47^{2} + \left(22 a^{2} + 21 a + 43\right)\cdot 47^{3} + \left(7 a^{2} + 28 a + 31\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 17 a^{2} + 34 a + 22 + \left(33 a^{2} + 43 a + 30\right)\cdot 47 + \left(36 a^{2} + 14 a + 36\right)\cdot 47^{2} + \left(6 a^{2} + 23 a + 42\right)\cdot 47^{3} + \left(2 a^{2} + 12 a + 42\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 31 a^{2} + 35 a + 17 + \left(34 a^{2} + 39 a + 5\right)\cdot 47 + \left(33 a^{2} + 42 a + 35\right)\cdot 47^{2} + \left(28 a^{2} + 2 a + 45\right)\cdot 47^{3} + \left(31 a^{2} + 8 a + 38\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5)(2,4)(3,9)(6,7)$
$(1,8,5,6,2,3,9,4,7)$
$(1,6,9)(2,4,8)(3,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,5)(2,4)(3,9)(6,7)$$0$
$2$$3$$(1,6,9)(2,4,8)(3,7,5)$$-1$
$2$$9$$(1,8,5,6,2,3,9,4,7)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,5,2,9,7,8,6,3,4)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,2,7,6,4,5,9,8,3)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.