Properties

Label 2.11e2_23.9t3.1c3
Dimension 2
Group $D_{9}$
Conductor $ 11^{2} \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$2783= 11^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 4 x^{7} - x^{6} + 5 x^{5} + 40 x^{4} - 17 x^{3} - 82 x^{2} - 38 x - 23 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{3} + 5 x + 57 $
Roots:
$r_{ 1 }$ $=$ $ 8 a^{2} + 18 a + 54 + \left(10 a^{2} + 37 a\right)\cdot 59 + \left(42 a^{2} + 14 a + 34\right)\cdot 59^{2} + \left(10 a^{2} + 16 a + 33\right)\cdot 59^{3} + \left(10 a^{2} + 5 a + 57\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 a^{2} + 44 a + 4 + \left(53 a^{2} + 4 a + 25\right)\cdot 59 + \left(45 a^{2} + 3 a + 58\right)\cdot 59^{2} + \left(22 a^{2} + 2 a + 10\right)\cdot 59^{3} + \left(39 a^{2} + 36 a + 6\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 a^{2} + 38 a + 40 + \left(35 a^{2} + 17 a + 46\right)\cdot 59 + \left(31 a^{2} + 45 a + 50\right)\cdot 59^{2} + \left(35 a^{2} + 58 a + 47\right)\cdot 59^{3} + \left(8 a^{2} + 3 a + 31\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{2} + 39 a + 21 + \left(45 a^{2} + 12 a + 58\right)\cdot 59 + \left(33 a^{2} + 32 a + 5\right)\cdot 59^{2} + \left(27 a^{2} + 51 a + 11\right)\cdot 59^{3} + \left(17 a^{2} + 16 a + 3\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 a^{2} + 50 a + 1 + \left(17 a^{2} + 58 a + 46\right)\cdot 59 + \left(20 a^{2} + 4 a + 32\right)\cdot 59^{2} + \left(34 a^{2} + 50 a + 4\right)\cdot 59^{3} + \left(32 a^{2} + 40 a + 33\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a^{2} + 30 a + 8 + \left(6 a^{2} + 41 a + 49\right)\cdot 59 + \left(7 a^{2} + 8 a + 47\right)\cdot 59^{2} + \left(48 a^{2} + 9 a + 30\right)\cdot 59^{3} + \left(17 a^{2} + 14 a + 3\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 47 a^{2} + 2 a + 7 + \left(3 a^{2} + 9 a + 19\right)\cdot 59 + \left(42 a^{2} + 12 a + 53\right)\cdot 59^{2} + \left(20 a^{2} + 50 a + 7\right)\cdot 59^{3} + \left(31 a^{2} + 36 a + 10\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 8 a^{2} + a + 4 + \left(7 a^{2} + 38 a + 29\right)\cdot 59 + \left(7 a^{2} + 24 a + 27\right)\cdot 59^{2} + \left(4 a^{2} + 2 a + 27\right)\cdot 59^{3} + \left(22 a^{2} + 44 a + 7\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 43 a^{2} + 14 a + 42 + \left(57 a^{2} + 16 a + 20\right)\cdot 59 + \left(5 a^{2} + 31 a + 43\right)\cdot 59^{2} + \left(32 a^{2} + 54 a + 2\right)\cdot 59^{3} + \left(56 a^{2} + 37 a + 24\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7,4)(2,8,9)(3,5,6)$
$(1,2)(3,5)(4,8)(7,9)$
$(1,3,9,7,5,2,4,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,2)(3,5)(4,8)(7,9)$$0$
$2$$3$$(1,7,4)(2,8,9)(3,5,6)$$-1$
$2$$9$$(1,3,9,7,5,2,4,6,8)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,9,5,4,8,3,7,2,6)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,5,8,7,6,9,4,3,2)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.