Properties

Label 2.11_881.4t3.3
Dimension 2
Group $D_4$
Conductor $ 11 \cdot 881 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9691= 11 \cdot 881 $
Artin number field: Splitting field of $f= x^{8} + 68 x^{6} + 980 x^{4} + 3707 x^{2} + 7744 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 8 + 51\cdot 97 + 42\cdot 97^{2} + 18\cdot 97^{3} + 26\cdot 97^{4} + 34\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 25 + 63\cdot 97 + 36\cdot 97^{2} + 29\cdot 97^{4} + 64\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 30 + 19\cdot 97 + 60\cdot 97^{2} + 77\cdot 97^{3} + 51\cdot 97^{4} + 8\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 34 + 60\cdot 97 + 54\cdot 97^{2} + 87\cdot 97^{4} + 86\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 63 + 36\cdot 97 + 42\cdot 97^{2} + 96\cdot 97^{3} + 9\cdot 97^{4} + 10\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 67 + 77\cdot 97 + 36\cdot 97^{2} + 19\cdot 97^{3} + 45\cdot 97^{4} + 88\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 72 + 33\cdot 97 + 60\cdot 97^{2} + 96\cdot 97^{3} + 67\cdot 97^{4} + 32\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 89 + 45\cdot 97 + 54\cdot 97^{2} + 78\cdot 97^{3} + 70\cdot 97^{4} + 62\cdot 97^{5} +O\left(97^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,4)(5,8,7,6)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $-2$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,4)(5,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.