Properties

Label 2.11_73.5t2.1c1
Dimension 2
Group $D_{5}$
Conductor $ 11 \cdot 73 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{5}$
Conductor:$803= 11 \cdot 73 $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 2 x^{3} - 19 x^{2} + 33 x - 20 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{5}$
Parity: Odd
Determinant: 1.11_73.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 14 + \left(17 a + 18\right)\cdot 19 + \left(2 a + 17\right)\cdot 19^{2} + \left(16 a + 18\right)\cdot 19^{3} + \left(3 a + 17\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 7\cdot 19 + 8\cdot 19^{2} + 12\cdot 19^{3} + 7\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 12 + a\cdot 19 + \left(16 a + 3\right)\cdot 19^{2} + \left(2 a + 13\right)\cdot 19^{3} + \left(15 a + 5\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 2 + \left(9 a + 15\right)\cdot 19 + \left(a + 17\right)\cdot 19^{2} + \left(7 a + 12\right)\cdot 19^{3} + \left(2 a + 5\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 12 + \left(9 a + 14\right)\cdot 19 + \left(17 a + 9\right)\cdot 19^{2} + \left(11 a + 18\right)\cdot 19^{3} + 16 a\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,5)(2,4)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$2$
$5$$2$$(1,4)(2,3)$$0$
$2$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2}$
$2$$5$$(1,3,5,2,4)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.