Properties

Label 2.11_61.5t2.1
Dimension 2
Group $D_{5}$
Conductor $ 11 \cdot 61 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{5}$
Conductor:$671= 11 \cdot 61 $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 2 x^{3} + 7 x^{2} - 9 x + 7 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{5}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 12 + \left(8 a + 6\right)\cdot 13 + \left(10 a + 6\right)\cdot 13^{2} + \left(5 a + 1\right)\cdot 13^{3} + \left(7 a + 12\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 8 + \left(7 a + 7\right)\cdot 13 + \left(2 a + 7\right)\cdot 13^{2} + \left(8 a + 6\right)\cdot 13^{3} + \left(7 a + 3\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 1 + 4 a\cdot 13 + \left(2 a + 9\right)\cdot 13^{2} + \left(7 a + 9\right)\cdot 13^{3} + 5 a\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 12 + \left(5 a + 10\right)\cdot 13 + \left(10 a + 2\right)\cdot 13^{2} + \left(4 a + 12\right)\cdot 13^{3} + \left(5 a + 2\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 + 9\cdot 13^{3} + 6\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3)(2,4)$
$(1,5)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$5$ $2$ $(1,3)(2,4)$ $0$ $0$
$2$ $5$ $(1,2,4,3,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$
$2$ $5$ $(1,4,5,2,3)$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$ $\zeta_{5}^{3} + \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.