Properties

Label 2.11_37.8t6.2
Dimension 2
Group $D_{8}$
Conductor $ 11 \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$407= 11 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - x^{6} - x^{5} + 9 x^{4} - 15 x^{3} + 20 x^{2} - 8 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 433 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 285\cdot 433 + 212\cdot 433^{2} + 146\cdot 433^{3} + 413\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 184\cdot 433 + 49\cdot 433^{2} + 247\cdot 433^{3} + 80\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 145 + 43\cdot 433 + 141\cdot 433^{2} + 406\cdot 433^{3} + 226\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 267 + 419\cdot 433 + 191\cdot 433^{2} + 7\cdot 433^{3} + 420\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 287 + 377\cdot 433 + 96\cdot 433^{2} + 235\cdot 433^{3} + 209\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 314 + 418\cdot 433 + 64\cdot 433^{2} + 311\cdot 433^{3} + 413\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 338 + 98\cdot 433 + 209\cdot 433^{2} + 116\cdot 433^{3} + 257\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 344 + 337\cdot 433 + 332\cdot 433^{2} + 261\cdot 433^{3} + 143\cdot 433^{4} +O\left(433^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,3,7,6)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,7,5,3,8,2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$ $0$
$4$ $2$ $(1,5)(3,6)(4,8)$ $0$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$ $0$
$2$ $8$ $(1,6,4,2,8,3,5,7)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,2,5,6,8,7,4,3)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.