Properties

Label 2.11_37.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 11 \cdot 37 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$407= 11 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 7 x^{4} - 4 x^{3} + 8 x^{2} - x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.11_37.6t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 25 + \left(11 a + 25\right)\cdot 29 + \left(28 a + 4\right)\cdot 29^{2} + \left(4 a + 14\right)\cdot 29^{3} + \left(2 a + 27\right)\cdot 29^{4} + 22 a\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 25 + \left(3 a + 10\right)\cdot 29 + \left(2 a + 9\right)\cdot 29^{2} + \left(5 a + 20\right)\cdot 29^{3} + \left(15 a + 9\right)\cdot 29^{4} + \left(20 a + 26\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 20 + \left(23 a + 6\right)\cdot 29 + \left(19 a + 24\right)\cdot 29^{2} + \left(8 a + 1\right)\cdot 29^{3} + \left(21 a + 6\right)\cdot 29^{4} + \left(4 a + 4\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 12 + \left(17 a + 15\right)\cdot 29 + 19\cdot 29^{2} + \left(24 a + 10\right)\cdot 29^{3} + \left(26 a + 4\right)\cdot 29^{4} + \left(6 a + 22\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 4 + \left(5 a + 18\right)\cdot 29 + \left(9 a + 12\right)\cdot 29^{2} + \left(20 a + 25\right)\cdot 29^{3} + \left(7 a + 16\right)\cdot 29^{4} + \left(24 a + 6\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 4 + \left(25 a + 10\right)\cdot 29 + \left(26 a + 16\right)\cdot 29^{2} + \left(23 a + 14\right)\cdot 29^{3} + \left(13 a + 22\right)\cdot 29^{4} + \left(8 a + 26\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,6,3)(2,4,5)$
$(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$1$$3$$(1,3,6)(2,4,5)$$-2 \zeta_{3} - 2$
$1$$3$$(1,6,3)(2,5,4)$$2 \zeta_{3}$
$2$$3$$(1,6,3)(2,4,5)$$-1$
$2$$3$$(2,4,5)$$-\zeta_{3}$
$2$$3$$(2,5,4)$$\zeta_{3} + 1$
$3$$6$$(1,2,3,4,6,5)$$0$
$3$$6$$(1,5,6,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.