Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 a + 25 + \left(11 a + 25\right)\cdot 29 + \left(28 a + 4\right)\cdot 29^{2} + \left(4 a + 14\right)\cdot 29^{3} + \left(2 a + 27\right)\cdot 29^{4} + 22 a\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 19 a + 25 + \left(3 a + 10\right)\cdot 29 + \left(2 a + 9\right)\cdot 29^{2} + \left(5 a + 20\right)\cdot 29^{3} + \left(15 a + 9\right)\cdot 29^{4} + \left(20 a + 26\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 20 a + 20 + \left(23 a + 6\right)\cdot 29 + \left(19 a + 24\right)\cdot 29^{2} + \left(8 a + 1\right)\cdot 29^{3} + \left(21 a + 6\right)\cdot 29^{4} + \left(4 a + 4\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 20 a + 12 + \left(17 a + 15\right)\cdot 29 + 19\cdot 29^{2} + \left(24 a + 10\right)\cdot 29^{3} + \left(26 a + 4\right)\cdot 29^{4} + \left(6 a + 22\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 a + 4 + \left(5 a + 18\right)\cdot 29 + \left(9 a + 12\right)\cdot 29^{2} + \left(20 a + 25\right)\cdot 29^{3} + \left(7 a + 16\right)\cdot 29^{4} + \left(24 a + 6\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 10 a + 4 + \left(25 a + 10\right)\cdot 29 + \left(26 a + 16\right)\cdot 29^{2} + \left(23 a + 14\right)\cdot 29^{3} + \left(13 a + 22\right)\cdot 29^{4} + \left(8 a + 26\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(1,6,3)(2,4,5)$ |
| $(2,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $3$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$0$ |
$0$ |
| $1$ |
$3$ |
$(1,3,6)(2,4,5)$ |
$2 \zeta_{3}$ |
$-2 \zeta_{3} - 2$ |
| $1$ |
$3$ |
$(1,6,3)(2,5,4)$ |
$-2 \zeta_{3} - 2$ |
$2 \zeta_{3}$ |
| $2$ |
$3$ |
$(1,6,3)(2,4,5)$ |
$-1$ |
$-1$ |
| $2$ |
$3$ |
$(2,4,5)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $2$ |
$3$ |
$(2,5,4)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
| $3$ |
$6$ |
$(1,2,3,4,6,5)$ |
$0$ |
$0$ |
| $3$ |
$6$ |
$(1,5,6,4,3,2)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.