Properties

Label 2.11_37.4t3.3
Dimension 2
Group $D_4$
Conductor $ 11 \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$407= 11 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} + 26 x^{4} + 451 x^{2} + 121 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 18\cdot 67 + 8\cdot 67^{2} + 38\cdot 67^{3} + 46\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 9\cdot 67 + 46\cdot 67^{2} + 43\cdot 67^{3} + 4\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 56\cdot 67 + 59\cdot 67^{2} + 10\cdot 67^{3} + 26\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 16\cdot 67 + 47\cdot 67^{2} + 25\cdot 67^{3} + 10\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 48 + 50\cdot 67 + 19\cdot 67^{2} + 41\cdot 67^{3} + 56\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 56 + 10\cdot 67 + 7\cdot 67^{2} + 56\cdot 67^{3} + 40\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 60 + 57\cdot 67 + 20\cdot 67^{2} + 23\cdot 67^{3} + 62\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 66 + 48\cdot 67 + 58\cdot 67^{2} + 28\cdot 67^{3} + 20\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(3,6)(5,8)$
$(1,2,5,3)(4,6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $-2$
$2$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$
$2$ $4$ $(1,2,5,3)(4,6,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.