Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 18\cdot 67 + 8\cdot 67^{2} + 38\cdot 67^{3} + 46\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 + 9\cdot 67 + 46\cdot 67^{2} + 43\cdot 67^{3} + 4\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 56\cdot 67 + 59\cdot 67^{2} + 10\cdot 67^{3} + 26\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 + 16\cdot 67 + 47\cdot 67^{2} + 25\cdot 67^{3} + 10\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 48 + 50\cdot 67 + 19\cdot 67^{2} + 41\cdot 67^{3} + 56\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 56 + 10\cdot 67 + 7\cdot 67^{2} + 56\cdot 67^{3} + 40\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 60 + 57\cdot 67 + 20\cdot 67^{2} + 23\cdot 67^{3} + 62\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 66 + 48\cdot 67 + 58\cdot 67^{2} + 28\cdot 67^{3} + 20\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,7)(3,6)(5,8)$ |
| $(1,2,5,3)(4,6,8,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$-2$ |
| $2$ |
$2$ |
$(1,4)(2,7)(3,6)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,8)(3,4)(5,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,5,3)(4,6,8,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.