Properties

Label 2.11_37.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 11 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$407= 11 \cdot 37 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 4 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.11_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 36\cdot 47 + 39\cdot 47^{2} + 16\cdot 47^{3} + 16\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 32\cdot 47 + 16\cdot 47^{3} + 6\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 25\cdot 47 + 18\cdot 47^{2} + 29\cdot 47^{3} + 45\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 + 46\cdot 47 + 34\cdot 47^{2} + 31\cdot 47^{3} + 25\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.