Properties

Label 2.11_31.6t5.2c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 11 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$341= 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{9} - 12 x^{7} - 8 x^{6} + 48 x^{5} + 64 x^{4} - 53 x^{3} - 128 x^{2} - 44 x + 128 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.11_31.6t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 19 a^{2} + 22 a + 8 + \left(16 a^{2} + 19 a + 3\right)\cdot 23 + \left(3 a^{2} + 2 a + 4\right)\cdot 23^{2} + \left(18 a^{2} + 10 a + 19\right)\cdot 23^{3} + \left(12 a^{2} + 16 a + 1\right)\cdot 23^{4} + \left(15 a + 18\right)\cdot 23^{5} + \left(7 a^{2} + 7 a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 20 a^{2} + 12 a + 4 + \left(6 a^{2} + 13 a + 21\right)\cdot 23 + \left(19 a^{2} + 21 a + 1\right)\cdot 23^{2} + \left(4 a^{2} + 16 a + 7\right)\cdot 23^{3} + \left(20 a^{2} + 7 a + 9\right)\cdot 23^{4} + \left(19 a^{2} + 13 a\right)\cdot 23^{5} + \left(18 a^{2} + 21 a + 12\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 4 a + 10 + \left(21 a^{2} + 18 a + 9\right)\cdot 23 + \left(17 a^{2} + 6 a + 15\right)\cdot 23^{2} + \left(8 a^{2} + 11 a + 6\right)\cdot 23^{3} + \left(14 a^{2} + 12 a + 19\right)\cdot 23^{4} + \left(20 a^{2} + 9 a + 21\right)\cdot 23^{5} + \left(9 a^{2} + 18 a + 16\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 12 a + 11 + \left(22 a^{2} + 12 a + 21\right)\cdot 23 + \left(22 a^{2} + 21 a + 16\right)\cdot 23^{2} + \left(22 a^{2} + 18 a + 19\right)\cdot 23^{3} + \left(12 a^{2} + 21 a + 11\right)\cdot 23^{4} + \left(2 a^{2} + 16 a + 4\right)\cdot 23^{5} + \left(20 a^{2} + 16 a + 13\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 18 a^{2} + 19 a + 18 + \left(7 a^{2} + 12 a + 9\right)\cdot 23 + \left(21 a^{2} + 22\right)\cdot 23^{2} + \left(19 a^{2} + 8 a + 7\right)\cdot 23^{3} + \left(15 a^{2} + 21 a\right)\cdot 23^{4} + \left(11 a^{2} + 7 a + 9\right)\cdot 23^{5} + \left(11 a^{2} + 20 a + 9\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 18 a^{2} + 20 a + 22 + \left(7 a^{2} + 7 a + 21\right)\cdot 23 + \left(a^{2} + 13 a\right)\cdot 23^{2} + \left(19 a^{2} + a + 5\right)\cdot 23^{3} + \left(18 a^{2} + 17 a + 2\right)\cdot 23^{4} + \left(a^{2} + 20 a + 12\right)\cdot 23^{5} + \left(6 a^{2} + 19 a + 19\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 16 a^{2} + 4 a + 14 + \left(8 a^{2} + 7 a\right)\cdot 23 + \left(3 a^{2} + 15 a + 19\right)\cdot 23^{2} + \left(11 a^{2} + 15 a + 7\right)\cdot 23^{3} + \left(14 a^{2} + 7 a + 9\right)\cdot 23^{4} + \left(16 a^{2} + 15 a + 11\right)\cdot 23^{5} + \left(21 a^{2} + 18 a\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 21 a^{2} + 15 a + 22 + \left(15 a^{2} + 20 a + 12\right)\cdot 23 + \left(a^{2} + 11\right)\cdot 23^{2} + \left(3 a^{2} + 19 a + 8\right)\cdot 23^{3} + \left(17 a^{2} + 2 a + 17\right)\cdot 23^{4} + \left(8 a^{2} + 21 a + 12\right)\cdot 23^{5} + \left(14 a^{2} + 8 a + 5\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 10 a^{2} + 7 a + 6 + \left(7 a^{2} + 2 a + 14\right)\cdot 23 + \left(9 a + 22\right)\cdot 23^{2} + \left(7 a^{2} + 13 a + 9\right)\cdot 23^{3} + \left(11 a^{2} + 7 a + 20\right)\cdot 23^{4} + \left(9 a^{2} + 17 a + 1\right)\cdot 23^{5} + \left(5 a^{2} + 5 a + 17\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,4)(3,7,8)(5,6,9)$
$(1,6)(2,9)(4,5)$
$(3,6)(5,8)(7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(2,9)(4,5)$$0$
$1$$3$$(1,2,4)(3,7,8)(5,6,9)$$-2 \zeta_{3} - 2$
$1$$3$$(1,4,2)(3,8,7)(5,9,6)$$2 \zeta_{3}$
$2$$3$$(1,3,6)(2,7,9)(4,8,5)$$-1$
$2$$3$$(1,7,5)(2,8,6)(3,9,4)$$\zeta_{3} + 1$
$2$$3$$(1,5,7)(2,6,8)(3,4,9)$$-\zeta_{3}$
$3$$6$$(1,9,4,6,2,5)(3,7,8)$$0$
$3$$6$$(1,5,2,6,4,9)(3,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.